immobilized cyt c is related to the structural orientation of the
cyt c in the SBA-15 nanochannels. The immobilization of cyt c
through the cysteine residue leads the active site pointing away
from the silica wall, which would leave room for the substrate
to diffuse into the nanochannel and react with the active site of
cyt c in the void space of channels (Scheme 2b). We therefore
examined the two immobilized approaches through the cysteine
residue of cyt c. While the cysteine residue can covalently link
to thiol-modified SBA-15 through a disulfide bond; a non-
specific coordination from the grafted thiol groups to the heme
Fe(III) of cyt c can also destroy the catalytic center and cause
the leaching of Fe(III) ions. The immobilization of cyt c
through SBA-15-APMA showed that the confined space and
metal affinity interactions from the APMA-modified SBA-15
indeed provided the stability toward the leaching of enzyme
molecules under a high concentration of salts. In addition, the
immobilization of cyt c through the APMA-modified SBA-15
can provide a robust catalytic center, where the active site can
easily approach the substrate molecules. Thus, the SBA-15-
APMA provided a correct orientation that could position the
active site in a favorable location in the pores to facilitate its
activity.
S. Hamakawa, T. Hanaoka, T. Tsunoda, J. Mizuguchi and
F. Mizukami, Biochem. Eng. J., 2009, 44, 167.
(a) M. Vallet-Regi, F. Balas and D. Arcos, Angew. Chem., Int. Ed.,
8
2
007, 46, 7548; (b) J. L. Vivero-Escoto, I. I. Slowing, B. G. Trewyn
and Victor S. Y. Lin, Small, 2010, 6, 1952; (c) M. Manzano and
M. Vallet-Regi, J. Mater. Chem., 2010, 20, 5593; (d) A. Vinu,
M. Miyahara and K. Ariga, J. Nanosci. Nanotechnol., 2006,
6
, 1510; (e) Y. Fukushima, T. Kajino and T. Itoh, Curr. Nanosci.,
006, 2, 211; (f) Z. H. Dai, H. C. Bao, X. D. Yang and H. X. Ju,
2
Biosens. Bioelectron., 2008, 23, 1070.
9
(a) K. Ariga, A. Vinu, J. P. Hill and T. Mori, Coord. Chem. Rev.,
2
007, 251, 2562; (b) M. Hartmann, Chem. Mater., 2005, 17, 4577;
c) J. Lee, H. Bin Na, B. C. Kim, J. H. Lee, B. Lee, J. H. Kwak,
(
Y. Hwang, J. G. Park, M. B. Gu, J. Kim, J. Joo, C. H. Shin,
J. W. Grate and T. Hyeon, J. Mater. Chem., 2009, 19, 7864;
(
d) L. Jie, F. Jie, C. Z. Yu, L. Y. Zhang, S. Y. Jiang, T. Bo and
D. Y. Zhao, Microporous Mesoporous Mater., 2004, 73, 121;
e) A. Vinu, V. Murugesan, O. Tangermann and M. Hartmann,
(
Chem. Mater., 2004, 16, 3056; (f) Y. J. Wang and F. Caruso, Chem.
Mater., 2005, 17, 953.
1
1
0 L. Frunz, R. Prins and G. D. Pirngruber, Chem. Mater., 2007,
9, 4357.
1
1 (a) C. H. Lee, S. T. Wong, T. S. Lin and C. Y. Mou, J. Phys. Chem.
B, 2005, 109, 775; (b) C. H. Lee, H. C. Lin, T. S. Lin and
C. Y. Mou, J. Phys. Chem. C, 2009, 113, 16058.
1
2 (a) C. H. Lei, Y. Shin, J. Liu and E. J. Ackerman, Nano Lett., 2007,
, 1050; (b) J. Liu, C. M. Li, Q. H. Yang, J. Yang and C. Li,
7
Langmuir, 2007, 23, 7255; (c) C. H. Lei, T. A. Soares, Y. S.
Shin, J. Liu and E. J. Ackerman, Nanotechnology, 2008,
1
9, 125102; (d) Y. J. Lu, P. J. Li, Y. L. Guo, Y. Q. Wang and
Acknowledgements
G. Z. Lu, Prog. Chem., 2008, 20, 1172; (e) S. Matsuura, R. Ishii,
T. Itoh, T. Hanaoka, S. Hamakawa, T. Tsunoda and
F. Mizukami, Microporous Mesoporous Mater., 2010, 127, 61;
We wish to thank Prof. S. C. Ke of Department of Physics,
National Dong-Hwa University for assisting with the EPR
measurements at low temperatures. This work was supported
by a research grant from the National Science Council of
Taiwan (NSC 99-2113-M-259 -006 -MY2).
(
2
f) C. Ispas, I. Sokolov and S. Andreescu, Anal. Bioanal. Chem.,
009, 393, 543; (g) I. Oda, M. Iwaki, D. Fujita, Y. Tsutsui,
S. Ishizaka, M. Dewa, M. Nango, T. Kajino, Y. Fukushima and
S. Itoh, Langmuir, 2010, 26, 13399.
13 C. H. Lee, J. Lang, C. W. Yen, P. C. Shih, T. S. Lin and
C. Y. Mou, J. Phys. Chem. B, 2005, 109, 12277.
4 K. C. Kao, C. H. Lee, T. S. Lin and C. Y. Mou, J. Mater. Chem.,
010, 20, 4653.
5 (a) H. M. Kao, L. P. Lee and A. Palani, Anal. Chem., 2008,
80, 3016; (b) C. Delacote, Fabrice O. M. Gaslain, B. Lebeau and
A. Walcarius, Talanta, 2009, 79, 877; (c) E. Levi, Y. Gofer,
Y. Vestfreed, E. Lancry and D. Aurbach, Chem. Mater., 2002,
14, 2757.
1
1
2
References
1
J. Berg, J. Tymoczko and L. Stryer, Biochemistry, W. H. Freeman
and Company, New York, NY, 6th edn, 2007, p. 2.
(a) K. Ryu, J. Kim, J. Heo and Y. Chae, Biotechnol. Lett., 2002,
2
24, 1535; (b) R. Radi, L. Thomson, H. Rubbo and E. Prodanov,
Arch. Biochem. Biophys., 1991, 288, 112; (c) A. Fujita, H. Senzu,
T. Kunitake and I. Hamachi, Chem. Lett., 1994, 1219; (d) J. Deere,
E. Magner, J. G. Wall and B. K. Hodnett, Biotechnol. Prog., 2003,
16 (a) Y. F. Chang and D. F. Tai, Tetrahedron: Asymmetry, 2001,
12, 177; (b) D. F. Tai, Y. F. Chang and T. W. Chiou, J. Chin.
Chem. Soc., 2002, 49, 957.
1
9, 1238; (e) E. Busi, B. D. Howes, R. Pogni, R. Basosi, R. Tinoco
and R. Vazquez-Duhalt, J. Mol. Catal. B: Enzym., 2000, 9, 39;
f) R. Akasaka, T. Mashino and M. Hirobe, J. Chem. Soc., Perkin
17 (a) D. Y. Zhao, Q. Huo, J. L. Feng, B. F. Chmelka and
G. D. Stucky, J. Am. Chem. Soc., 1998, 120, 6024; (b) C. H. Lee,
T. S. Lin and C. Y. Mou, J. Phys. Chem. B, 2003, 107, 2543.
18 E. Torres, J. V. Sandoval, F. I. Rosell, A. G. Mauk and
R. Vazquez-Duhalt, Enzyme Microb. Technol., 1995, 17, 1014.
19 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz,
C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson,
E. W. Sheppard, S. B. Mccullen, J. B. Higgins and
J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
(
Trans. 1, 1994, 1, 1817; (g) P. Laveille, A. Falcimaigne,
F. Chamouleau, G. Renard, J. Drone, F. Fajula, S. Pulvin,
D. Thomas, C. Bailly and A. Galarneau, New J. Chem., 2010,
3
4, 2153.
3
4
C. C. Akoh, S. W. Chang, G. C. Lee and J. F. Shaw, J. Agric. Food
Chem., 2008, 22, 10445.
(a) R. Vazquez-Duhalt, J. Mol. Catal. B: Enzym., 1999, 7, 241;
20 D. L. Pavia, G. M. Lampman and G. S. Kriz, Introduction to
Spectroscopy, 3rd edn, 2001.
(b) E. Torres, J. V. Sandoval, F. I. Rosell, A. G. Mauk and
R. Vazquez-Duhalt, Enzyme Microb. Technol., 1995, 17, 1014.
(a) M. I. Kim, J. Kim, J. Lee, H. Jia, H. Bin Na, J. K. Youn,
J. H. Kwak, A. Dohnalkova, J. W. Grate, P. Wang, T. Hyeon,
H. G. Park and H. N. Chang, Biotechnol. Bioeng., 2007, 96, 210;
(b) S. L. Gao, Y. J. Wang, X. Diao, G. S. Luo and Y. Y. Dai,
Bioresour. Technol., 2010, 101, 3830.
(a) H. Garcia-Arellano, B. Valderrama, G. Saab-Rincon and
R. Vazquez-Duhalt, Bioconjugate Chem., 2002, 13, 1336;
(b) R. Vazquez-Duhalt, J. Mol. Catal. B: Enzym., 1999, 7, 241.
(a) J. Kim, J. W. Grate and P. Wang, Chem. Eng. Sci., 2006,
21 (a) S. Oellerich, H. Wackerbarth and P. Hildebrandt, J. Phys.
Chem. B, 2002, 106, 6566; (b) F. I. Rosell, J. C. Ferrer and
A. G. Mauk, J. Am. Chem. Soc., 1998, 120, 11234.
5
22 (a) J. Deere, E. Magner, J. G. Wall and B. K. Hodnett, J. Phys.
Chem. B, 2002, 106, 7340; (b) K. A. Carrado, S. M. Macha and
D. M. Tiede, Chem. Mater., 2004, 16, 2559; (c) A. Vinu, C. Streb,
V. Murugesan and M. Hartmann, J. Phys. Chem. B, 2003, 107, 8297.
23 (a) R. E. M. Diederix, M. Fittipaldi, J. A. R. Worrall, M. Huber,
M. Ubbink and G. W. Canters, Inorg. Chem., 2003, 42, 7249;
(b) C. H. Lee, C. Y. Mou, S. C. Ke and T. S. Lin, Mol. Phys., 2006,
104, 1635; (c) T. Much, V. Wagner, U. Bass, M. Leufgen, J. Geurts
and L. W. Molenkamp, Synth. Met., 2004, 146, 317–320.
24 (a) I. I. Slowing, B. G. Trewyn and V. S. Y. Lin, J. Am. Chem. Soc.,
2007, 129, 8845; (b) J. M. Rosenholm, A. Duchanoy and
M. Linden, Chem. Mater., 2008, 20, 1126.
6
7
61, 1017; (b) C. H. Lee, T. S. Lin and C. Y. Mou, Nano Today,
2009, 4, 165; (c) X. S. Zhao, X. Y. Bao, W. P. Guo and F. Y. Lee,
Mater. Today, 2006, 9, 32; (d) Y. Urabe, T. Shiomi, T. Itoh,
A. Kawai, T. Tsunoda, F. Mizukami and K. Sakaguchi,
ChemBioChem, 2007, 8, 668; (e) T. Itoh, R. Ishii, S. Matsuura,
1
816 New J. Chem., 2011, 35, 1809–1816
This journal is c The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011