Elasticity in Porous Silica under High Pressure
J. Phys. Chem. B, Vol. 106, No. 22, 2002 5621
(10) Hartmann, M.; Bischof, C. J. Phys. Chem. B 1999, 103, 6230.
(11) Koyano, K. A.; Tatsumi, T.; Tanaka, Y.; Nakata, S. J. Phys. Chem.
B 1997, 101, 9436.
(12) Wu, J.; Nagl, I.; Zhao, L.; Chronister, L. E.; Anwander, R.; Tolbert,
S. H. In preparation.
(13) Wu, J.; Abu-Omar, M. M.; Tolbert, S. H. Nano Lett. 2001, 1, 27.
(14) Levien, L.; Prewitt, C. T.; Weidner, D. J. Am. Mineral. 1980, 65,
920.
(15) Hazen, R. M.; Finger, L. W.; Hemley, R. J.; Mao, H. K. Solid
State Commun. 1989, 72, 507.
(16) Meade, C.; Hemley, R. J.; Mao, H. K. Phys. ReV. Lett. 1992, 69,
1387.
(17) Williams, Q.; Hemley, R. J.; Kruger, M. B.; Jeanloz, R. J. Geophys.
Res. 1993, 98, 22157.
(18) Williams, Q.; Jeanloz, R. Science 1988, 239, 902.
(19) Susman, S.; Volin, K. J.; Price, D. L.; Grimsditch, M.; Rino, J. P.;
Kalia, R. K.; Vashishta, P.; Gwanmesia, G.; Wang, Y.; Liebermann, R. C.
Phys. ReV. B 1991, 43, 1194.
(20) Zha, C. S.; Hemley, R. J.; Mao, H. K.; Duffy, T. S.; Meade, C.
Phys. ReV. B 1994, 50, 13105.
(21) Cohen, H. M.; Roy, R. J. Am. Ceram. Soc. 1961, 44, 523.
(22) Hemley, R. J.; Mao, H. K.; Bell, P. M.; Mysen, B. O. Phys. ReV.
Lett. 1986, 57, 747.
5. Conclusions
Porous silica with nanometer-scale p6mm periodicity has been
shown to have excellent mechanical stability and reversibility
under hydrostatic pressure (up to 8 GPa). High-pressure infrared
absorption spectra of both sintered sol-gel silica and the ordered
mesoporous silica were used in combination with a noncentral
force model to calculate changes in the Si-O-Si intertetrahedral
bond angle with pressure. As with bulk amorphous silica, at
pressures below 4 GPa compaction in the mesoporous silica
occurs through rotation of the SiO4 tetrahedra, resulting in a
reduction of the inter-tetrahedral Si-O-Si bond angles and a
decrease in the angular distribution. At higher pressures,
however, distortion of the atomic scale structure becomes
energetically unfavorable compared to distortions of the na-
nometer scale architecture. This results in retarded changes in
both the average bridging bond angle and its distribution. These
nanoscale distortions appear to prevent the formation of
metastable atomic configurations to pressures as high as 12
GPa.2
Under pressure, the structural changes on these two different
length scales (atomic and nanometer) may thus be inherently
correlated, establishing a structural memory effect for the
ambient pressure structures. As a result, during decompression,
changes to the localized atomic scale structure of the silica
framework and to the mesoscopic periodicity of the pore
structure are both reversible, avoiding the irreversible densifi-
cation observed in bulk amorphous silica in a similar pressure
range. This work suggests that atomic scale rearrangements in
nano-periodic amorphous oxide materials under high pressure
may be fundamentally different from those observed in bulk
materials. As a result, properties such as elasticity can potentially
be optimized, combining lightweight, stiffness, and structural
reversibility through appropriate nanoengineering.
(23) Stishov, S. M.; Popova, S. V. Geokhirniya 1961, 837.
(24) Sen, P. N.; Thorpe, M. F. Phys. ReV. B 1977, 15, 4030.
(25) Galeener, F. L. Phys. ReV. B 1979, 19, 4294.
(26) Thorpe, F.; Galeener, F. L. J. Non-Cryst. Solids 1980, 38/39, 1197.
(27) Galeener, F. L.; Lucovsky, G. Phys. ReV. Lett. 1976, 37, 1474.
(28) Payne, M. C.; Inkson, J. C. J. Non-Cryst. Solids 1984, 68, 351.
(29) Wilson, M.; Madden, P. A.; Hemmati, M.; Angell, C. A. Phys.
ReV. Lett. 1996, 77, 4023.
(30) McMillan, P. Am. Mineral. 1984, 69, 622.
(31) Galeener, F. L.; Mikkelsen, J. C., Jr. Phys. ReV. B 1981, 23, 5527.
(32) Galeener, F. L.; Gissberger, A. E. Phys. ReV. B 1983, 27, 6199.
(33) Lehmann, A.; Schumann, L.; Hu¨bner, K. Phys. Status Solidi B 1983,
117, 689.
(34) Smith, J. V.; Blackwell, C. S. Nature 1983, 303, 223.
(35) Dupree, E.; Pettifer, R. F. Nature 1984, 308, 523.
(36) Gladden, L. F.; Carpenter, T. A.; Elliott, S. R. Philos. Mag. B 1986,
53, L81.
(37) Wittlinger, J.; Fisher, R.; Werner, S.; Schneider, J.; Schulz, H. Acta
Crystallogr. B 1997, 53, 745.
(38) Forman, R. A.; Piermarini, G. J.; Barnett, J. D.; Block, S. Science
1972, 176, 284.
Acknowledgment. This manuscript includes data collected
at the Stanford Synchrotron Radiation Laboratory (SSRL), which
is operated by the Department of Energy, Office of Basic Energy
Sciences. This work also made use of equipment supported by
the National Science Foundation under Grant DMR-9975975
and equipment acquired under an Air Force Office of Scientific
Research Grant (F49620-98-1-0475). This research was sup-
ported by the National Science Foundation under Grant DMR-
9807180 and by the Beckman Young Investigator program.
E.L.C. acknowledges research support from the National Science
Foundation (CHE-9714886). S.H.T. is an Alfred P. Sloan
Foundation Research Fellow.
(39) Murray, R. A.; Ching, W. Y. Phys. ReV. B 1989, 39, 1320.
(40) McMillan, P.; Piriou, B.; Couty, R. J. Chem. Phys. 1984, 81, 4234.
(41) Velde, B.; Couty, R. J. Non-Cryst. Solids 1987, 94, 238.
(42) Almeida, R. M.; Pantano, C. G. J. Appl. Phys. 1990, 66, 4225.
(43) Seco, A. M.; Gonc¸alves, M. C.; Almeida, R. M. Mater. Sci. Eng.
B 2000, 76, 193.
(44) Bock, J.; Su, G.-J. J. Am. Ceram. Soc. 1970, 53, 69.
(45) Laughlin, R. B.; Joannopoulos, J. D. Phys. ReV. B 1977, 16, 2942.
(46) Jund, P.; Jullien, R. J. Chem. Phys. 2000, 113, 2768.
(47) Gaskell, P. H.; Johnson, D. W. J. Non-Cryst. Solids 1976, 20, 171.
(48) Born, M. Ann. Phys. (Leipzig) 1914, 44, 605.
(49) Martinet, C.; Devine, R. A. B. J. Non-Cryst. Solids 1995, 187, 96.
(50) Lehmann, A.; Schumann, L.; Hu¨bner, K. Phys. Status Solidi B 1984,
121, 505.
(51) Almeida, R. M.; Guiton, T. A.; Pantano, C. G. J. Non-Cryst. Solids
1990, 121, 193.
(52) Devine, R. A. B. J. Non-Cryst. Solids 1993, 152, 50.
(53) Couty, R.; Sabatier, G. J. Chim. Phys. 1978, 75, 843.
(54) Devine, R. A. B.; Dupree, R.; Farnan, I.; Capponi, J. J. Phys. ReV.
B 1987, 35, 2560.
(55) Devine, R. A. B.; Arndt, J. Phys. ReV. B 1987, 35, 9376.
(56) Kondo, K.; Lio, S.; Sawaoka, A. J. Appl. Phys. 1981, 52, 2826.
(57) Galeener, F. L. J. Non-Cryst. Solids 1982, 49, 53.
(58) Sharma, S. K.; Mammone, J. F.; Nicol, M. F. Nature 1981, 292,
140.
References and Notes
(1) Guo, X.; Gibson, L. Int. J. Mech. Sci. 1999, 41, 85.
(2) Wu, J.; Liu, X.; Tolbert, S. J. Phys. Chem. B 2000, 104, 11837.
(3) Kresge, C. T.; Leonowitz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck,
J. S. Nature 1992, 359, 710; Beck, J. S.; Vartuli, J. C.; Roth, W. J.;
Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. T.; Chu, C. T.-W.; Olson, D.
H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J.
Am. Chem. Soc. 1992, 114, 10834.
(59) Lacks, D. J. Phys. ReV. Lett. 1998, 80, 5385.
(60) Roberts, M. M.; Wienhoff, J. R.; Grant, K.; Lacks, D. J. J. Non-
Cryst. Solids 2001, 281, 205.
(61) Mukherjee, G. D.; Vaidya, S. N.; Sugandhi, V. Phys. ReV. Lett.
2001, 8719, 5501.
(4) Zhao, D. Y.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.;
Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
(5) Yu, C.; Yu, Y.; Zhao, D. Chem. Commun. 2000, 7, 575.
(6) Yang, P.; Zhao, D.; Chmelka, B.; Stucky, G. Chem. Mater. 1998,
10, 2033.
(62) Adachi, T.; Sakka, S. J. Mater. Sci. 1990, 25, 4732.
(63) Pekala, R. W.; Hrubesh, L. W.; Tilotson, T. M.; Alviso, C. T.;
Poco, J. F.; LeMay, J. D. In Mechanical Properties of Porous and Cellular
Materials; Sieradzki, K.; Green, D. J., Gibson, L. J., Eds.; MRS Proc. 1991,
207, 197.
(7) Meade, C.; Jeanloz, R. Phys. ReV. B 1987, 35, 236.
(8) Gusev, V. Y.; Feng, X.; Bu, Z.; Haller, G. L.; O’Brien, J. A. J.
Phys. Chem. 1996, 100, 1985.
(9) Tatsumi, T.; Koyano, K. A.; Tanaka, Y.; Nakata, S. Chem. Lett.
1997, 469.