ARTICLE IN PRESS
G. Wang et al. / Journal of Solid State Chemistry 182 (2009) 1649–1660
1659
This kind of release profile is peculiar and, to our best knowledge,
has never been reported for mesoporous materials. However,
we do not know its underlying mechanism, which may warrant
further investigations.
[b] S.P. Rigby, M. Fairhead, C.F. van der Walle, Curr. Pharm. Des. 14 (2008)
1821–1831;
[c] I.I. Slowing, B.G. Trewyn, S. Giri, V.S.-Y. Lin, Adv. Funct. Mater. 17 (2007)
1225–1236;
[d] B.G. Trewyn, I.I. Slowing, S. Giri, H.-T. Chen, V.S.-Y. Lin, Acc. Chem. Res. 40
(2007) 846–853;
[e] F. Balas, M. Manzano, P. Horcajada, M. Vallet-Regı´, J. Am. Chem. Soc. 128
(2006) 8116–8117;
[f] P. Horcajada, A. Ra´mila, G. Ferey, M. Vallet-Regı´, Solid State Sci. 8 (2006)
1243–1249.
4. Conclusion
[5] [a] Z.G. Feng, Y.S. Li, D.C. Niu, L. Li, W. Zhao, H. Chen, L. Li, J. Gao, M. Ruan,
J. Shi, Chem. Commun. (2008) 2629–2631;
[b] A. Sayari, S. Hamoudi, Chem. Mater. 13 (2001) 3151–3168.
[6] [a] A. Stein, B.J. Melde, R.C. Schroden, Adv. Mater. 12 (2000) 1403–1419;
[b] D. Brunel, A.C. Blanc, A. Galarneau, F. Fajula, Catal. Today 73 (2002)
139–152;
The adsorption capacity and release properties of mesoporous
materials for different drug molecules can be improved by
functionalizing them with judiciously chosen organic groups.
Rhodamine 6G and ibuprofen, which have different structures and
surface properties, were used as model drug molecules to conduct
comparative adsorption and release studies of organic functiona-
lized mesoporous materials that were synthesized by post-
grafting and co-condensation. While mesoporous samples func-
tionalized with mercaptopropyl and vinyl groups showed im-
proved adsorption capacity for rhodamine 6G, samples
functionalized with primary and secondary amine groups that
were synthesized by grafting and co-condensation methods
exhibited less adsorption capacity for rhodamine 6G. On the
other hand, the trend in the degree of adsorption of ibuprofen was
found to be the reverse of the results obtained for rhodamine 6G.
The samples containing mercaptopropyl and vinyl groups showed
less adsorption capacity for ibuprofen than the samples functio-
nalized with primary and secondary amine groups. The release of
the adsorbed molecules was also found to be dependent on the
type of functional groups in the materials. The method of tuning
adsorption capacity and release properties by organic functiona-
lization of mesoporous materials could be extended to other
organic functional groups and to a variety of other drug molecules.
The resulting functionalized mesoporous materials may help to
deliver drugs efficiently and, thus, minimize the drugs’ possible
adverse effects. Introducing secondary bioactive groups onto the
external surface of the materials may also allow targeted delivery
of the drug cargo to specific cells.
[c] J. Liu, X.-D. Feng, G.E. Fryxell, L.-Q. Wang, A.-Y. Kim, M.L. Gong, Adv. Mater.
10 (1998) 161–165;
[d] S. Shylesh, A.P. Singh, J. Catal. 244 (2006) 52–64.
[7] R. Mellaerts, J.A.G. Jammaer, M. Van Speybroeck, H. Chen, J. Van Humbeeck, P.
Augustijns, G. Van den Mooter, J.A. Martens, Langmuir 24 (2008) 8651–8659.
[8] [a] S.P. Hudson, R.F. Padera, R. Langer, D.S. Kohane, Biomaterials 29 (2008)
4045–4055;
[b] R. Mellaerts, R. Mols, J.A.G. Jammaer, C.A. Aerts, P. Annaert, J.V. Humbeeck,
G. Van den Mooter, P. Augustijns, J.A. Martens, Eur. J. Pharm. Biopharm. 69
(2008) 223–230.
[9] [a] J.M. Rosenholm, A. Meinander, E. Peuhu, R. Niemi, J.E. Eriksson,
C. Sahlgren, M. Linde´n, ACS Nano 3 (2009) 197–206;
[b] S.R. Blumen, K. Cheng, M.E. Ramos-Nino, D.J. Taatjes, D.J. Weiss,
C.C. Landry, B.T. Mossman, Am. J. Respir. Cell Mol. 36 (2007) 333–342.
´
˜
´
´
[10] [a] A. Ramila, B. Munoz, J. Perez-Pariente, M. Vallet-Regı, J. Sol–gel Sci.
Technol. 26 (2003) 1199–1202;
[b] M. Vallet-Regi, J.C. Doadrio, A.L. Doadrio, I. Izquierdo-Barba, J. Perez-
Pariente, Solid State Ionics 172 (2004) 435–439.
[11] [a] Y.F. Zhu, J.L. Shi, W.H. Shen, X.P. Dong, J.W. Feng, M.L. Ruan, Y.S. Li, Angew.
Chem. Int. Ed. 44 (2005) 5083–5087;
[b] Y.-F. Zhu, J.-L. Shi, Y.-S. Li, H.-R. Chen, W.-H. Shen, X.-P. Dong, J. Mater. Res.
20 (2005) 54–61;
[c] Q. Yang, S.C. Wang, P.W. Fan, L.F. Wang, Y. Di, K.F. Lin, F.S. Xiao, Chem.
Mater. 17 (2005) 5999–6003.
[12] [a] C.D. Nunes, P.D. Vaz, A.C. Fernandes, P. Ferreira, C.C. Roma˜o, M.J. Calhorda,
Eur. J. Pharm. Biopharm. 66 (2007) 357–365;
[b] Q.L. Tang, Y. Xu, D. Wu, Y.H. Sun, J. Solid State Chem. 179 (2006)
1513–1520;
[c] V. Ambrogi, L. Perioli, F. Marmottini, S. Giovagnoli, M. Esposito, C. Rossi,
Eur. J. Pharm. Biopharm. 32 (2007) 216–222.
[13] [a] M. Vallet-Regı´, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 46 (2007)
7548–7558;
[b] R. Mellaerts, C.A. Aerts, J.V. Humbeeck, P. Augustijns, G.V. Mooter,
J.A. Martens, Chem. Commun. 13 (2007) 1375–1377.
[14] F. Qu, G. Zhu, S. Huang, S. Li, J. Sun, D. Zhang, S. Qiu, Microporous Mesoporous
Mater. 92 (2006) 1–9.
Acknowledgments
We gratefully acknowledge the partial financial support by the
US National Science Foundation (NSF), CAREER Grant, CHE-
0645348 for this work. EAB and ANO were partly supported by
NSF-REU (Research Experiences for Undergraduates) program
over Summer 2006 and 2007, respectively.
[15] [a] S.-W. Song, K. Hidajat, S. Kawi, Langmuir 21 (2005) 9568–9575;
´
[b] B. Gonzalez, M. Colilla, M. Vallet-Regi, Chem. Mater. 20 (2008)
4826–4834.
[16] [a] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, J. Biomed.
Mater. Res. 24 (1990) 721–734;
[b] Q. Tang, Y. Xu, D. Wu, Y. Sun, J. Solid State Chem. 179 (2006) 1513–1520.
[17] K.K. Sharma, T. Asefa, Angew Chem. Int. Ed. 46 (2007) 2879–2882.
[18] [a] I.I. Slowing, B.G. Trewyn, S. Giri, V.S.-Y. Lin, Adv. Funct. Mater. 17 (2007)
1225–1236;
Appendix A. Supplementary material
[b] B.G. Trewyn, I.I. Slowing, S. Giri, H.-T. Chen, V.S.-Y. Lin, Acc. Chem. Res. 40
(2007) 846–853;
[c] I.I. Slowing, J.-L. Vivero-Escoto, C.-W. Wu, V.S-Y. Lin, Adv. Drug Delivery
Rev. 60 (2008) 1278–1288;
Supplementary data associated with this article can be found
S. Giri, B.G. Trewyn, V.S.-Y. Lin, Nanomedicine 2 (2007) 99–111.
[d]
[19] [a] F.Y. Qu, G.S. Zhu, S.Y. Huang, S.G. Li, J.Y. Sun, D.L. Zhang, S.L. Qiu,
Microporous Mesoporous Mater. 92 (2006) 1;
[b] H. Vallhov, S. Gabrielsson, M. Stromme, A. Scheynius, A.E. Garcia-Bennett,
Nano Lett. 7 (2007) 3576.
[20] [a] K.K. Sharma, T. Asefa, Angew. Chem. Int. Ed. 46 (2007) 2879–2882;
[b] K. Moller, T. Bein, Chem. Mater. 10 (1998) 2950–2963;
[c] G.E. Fryxell, J. Liu, T.A. Hauser, Z. Nie, K.F. Ferris, S. Mattigod, G. Meiling,
R.T. Hallen, Chem. Mater. 11 (1999) 2148–2154.
[21] [a] J.A. Melero, R. van Grieken, G. Morales, Chem. Rev. 106 (2006) 3790–3812;
[b] M.H. Lim, C.F. Blanford, A. Stein, J. Am. Chem. Soc. 119 (1997) 4090–4091;
[c] M. Kruk, T. Asefa, M. Jaroniec, G.A. Ozin, Stud. Surf. Sci. Catal. 141 (2002)
197–204;
References
[1] [a] M. De, P.S. Ghosh, V.M. Rotello, Adv. Mater. 20 (2008) 1–17;
[b] P. Kolhe, E. Misra, R.M. Kannan, S. Kannan, M. Lieh-Lai, Int. J. Pharm. 259
(2003) 143–160.
[2] [a] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359
(1992) 710–712;
[b] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt,
C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins,
J.C. Schlenker, J. Am. Chem. Soc. 114 (1992) 10834–10843.
[3] [a] T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 63
(1990) 1535–1537;
[d] I. Slowing, B.G. Trewyn, V.S.-Y. Lin, J. Am. Chem. Soc. 128 (2006)
14792–14793.
[22] S. Huh, J.W. Wiench, J.-C. Yoo, M. Pruski, V.S.-Y. Lin, Chem. Mater. 15 (2003)
4247–4256.
[b] S. Inagaki, Y. Fukushima, K. Kuroda, J. Chem. Soc., Chem. Commun. (1993)
680–682.
[23] [a] Y. Cho, R. Shi, R.B. Borgens, A. Ivanisevic, Nanomedicine
507–519;
3 (2008)
[4] [a] M. Vallet-Regi, A. Ra´mila, R.P. del Real, J. Pe´rez-Pariente, Chem. Mater. 13
(2001) 308–311;
[b] M. Suh, H.-J. Lee, J.-Y. Park, U.-H. Lee, Y.-U. Kwon, D.J. Kim, Chem. Phys.
Chem. 9 (2008) 1402–1408;