Journal of the American Chemical Society
Page 8 of 10
(15) Hong, K.; Morken, J. P. Catalytic Enantioselective One-pot Amino-
borylation of Aldehydes: A Strategy for Construction of Nonracemic α-
Amino Boronates. J. Am. Chem. Soc. 2013, 135, 9252–9254.
ASSOCIATED CONTENT
Supporting Information
1
2
3
4
5
6
7
8
9
(16) (a) Beenen, M. A.; An, C.; Ellman, J. A. Asymmetric Copper-catalyzed
Synthesis of Alpha-amino Boronate Esters from N-tert-Butanesulfinyl
Aldimines. J. Am. Chem. Soc. 2008, 130, 6910–6911. (b) Shibli, A.; Srebnik,
M. Synthesis of Novel α‐Aminoboronate Complexes of Aminoboranes and
Aminocyanoboranes. Eur. J. Inorg. Chem. 2006, 1686–1689. (c) Hu, N.;
Zhao, G.; Zhang, Y.; Liu, X.; Li, G.; Tang, W. Synthesis of Chiral α-Amino
Tertiary Boronic Esters by Enantioselective Hydroboration of α-
Arylenamides. J. Am. Chem. Soc. 2015, 137, 6746–6749. (d) Nishikawa, D.;
Hirano, K.; Miura, M. Asymmetric Synthesis of α-Aminoboronic Acid
Derivatives by Copper-catalyzed Enantioselective Hydroamination. J. Am.
Chem. Soc. 2015, 137, 15620–15623.
Experimental procedures and the characterization of all new com-
pounds are provided in the Supporting Information. The Supporting
Information is available free of charge on the ACS Publications web-
site.
AUTHOR INFORMATION
Corresponding Author
*sawamura@sci.hokudai.ac.jp
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Notes
(17) Selected examples of N-adjacent C(sp3)–H functionalization: (a)
Jain, P.; Verma, P.; Xia, G.; Yu, J.-Q. Enantioselective amine a-
functionalization via palladium catalysed C–H arylation of thioamides. Nat.
Chem. 2016, 9, 140–144. (b) Pan, S.; Endo, K.; Shibata, T. Ir(I)-Catalyzed
Enantioselective Secondary sp3 C–H Bond Activation of 2-
(Alkylamino)pyridines with Alkenes. Org. Lett. 2011, 13, 4692–4695. (c)
Pan S.; Matsuo, Y.; Endo, K.; Shibata, T. Cationic iridium-catalyzed enan-
tioselective activation of secondary sp3 C–H bond adjacent to nitrogen
atom. Tetrahedron 2012, 68, 9009–9015. (d) Chatani, N.; Asaumi, T.;
Ikeda, T.; Yorimitsu, S.; Ishii, Y.; Kakiuchi, F.; Murai, S. Carbonylation at
sp3 C−H Bonds Adjacent to a Nitrogen Atom in Alkylamines Catalyzed by
Rhodium Complexes. J. Am. Chem. Soc. 2000, 122, 12882–12883. (e)
Querard, P.; Perepichka, I.; Zysman-Colman, E.; Li, C.-J. Copper-catalyzed
asymmetric sp3 C–H arylation of tetrahydroisoquinoline mediated by a
visible light photoredox catalyst. Beilstein J. Org. Chem. 2016, 12, 2636–
2643. (f) Pastine, S. J.; Gribkov, D. V.; Sames, D. sp3 C−H Bond Arylation
Directed by Amidine Protecting Group:ꢀ α-Arylation of Pyrrolidines and
Piperidines. J. Am. Chem. Soc. 2006, 128, 14220–14221.
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This work was supported by JST ACT-C Grant Number
JPMJCR12YN, MEXT KAKENHI Grant Number JP15H05801 in
Precisely Designed Catalysts with Customized Scaffolding, and JSPS
KAKENHI Grant Number JP18H03906 in Grant-in-Aid for Scientific
Research (A) to M.Sawamura. R.L. thanks the Japanese Government
(MEXT) scholarship for the support during his Ph.D. studies.
REFERENCES
(1) Smoum, R., Rubinstein, A.; Dembitsky, V. M.; Srebnik, M. Boron Con-
taining Compounds as Protease Inhibitors. Chem. Rev. 2012, 112, 4156–
4220.
(2) Andrés, P.; Ballano, G.; Calaza, M. I.; Cativiela, C. Synthesis of a-
Aminoboronic Acids. Chem. Soc. Rev. 2016, 45, 2291–2307.
(3) Šterman, A.; Sosič, I.; Gobec, S; Časar, Z. Synthesis of Aminoboronic
Acid Derivatives: An Update on Recent Advances. Org. Chem. Front. 2019,
6, 2991–2998.
(4) Chen, D.; Frezza, M.; Schmitt, S.; Kanwar, J; Dou, Q. P. Bortezomib as
the First Proteasome Inhibitor Anticancer Drug: Current Status and Future
Perspectives. Curr Cancer Drug Targets 2011, 11, 239-253.
(5) Adams, J.; Kauffman, M. Development of the Proteasome Inhibitor
Velcade (Bortezomib). Cancer Invest. 2004, 22, 304–311.
(6) Green, B. D.; Flatt, P. R.; Bailey, C. J. Dipeptidyl Peptidase IV (DPP
IV) Inhibitors: A Newly Emerging Drug Class for the Treatment of Type 2
Diabetes. Diab. Vasc. Dis. Res. 2006, 3, 159–165.
(7) Lankas, G. R.; Leiting B.; Roy, R. S.; Eiermann, G. J.; Beconi, M. G.;
Biftu, T.; Chan, C. C.; Edmondson, S.; Feeney, W. P.; He, H.; Ippolito, D.
E.; Kim, D.; Lyons, K. A.; Ok, H. O.; Patel, R. A.; Petrov, A. N.; Pryor, K.
A.; Qian, X.; Reigle, L.; Woods, A.; Wu, J. K.; Zaller, D.; Zhang, X.; Zhu, L.;
Weber, A. E.; Thornberry, N. A. Dipeptidyl Peptidase IV Inhibition for the
Treatment of Type 2 Diabetes: Potential Importance of Selectivity Over
Dipeptidyl Peptidases 8 and 9. Diabetes 2005, 54, 2988–2994.
(8) Yang, W.; Gao, X.; Wang, B. Boronic Acid Compounds as Potential
pharmaceutical agents. Med. Res. Rev. 2003, 23, 346–368.
(9) Yang, F.; Zhu, M.; Zhang, J.; Zhou, H. Synthesis of Biologically Active
Boron-containing Compounds. MedChemComm 2018, 9, 201–211.
(10) Fyfe, J. W.; Watson, A. J. Recent Developments in Organoboron
Chemistry: Old Dogs, New Tricks. Chem 2017, 3, 31–55.
(11) Xu, L. W.; Luo, J.; Lu, Y. Asymmetric Catalysis with Chiral Primary
Amine-based Organocatalysts. Chem. Commun. 2009, 1807–1821.
(12) France, S.; Guerin, D. J.; Miller, S. J.; Lectka, T. Nucleophilic Chiral
Amines as Catalysts in Asymmetric Synthesis. Chem. Rev. 2003, 103, 2985–
3012.
(13) Matteson, D. S. Alpha-halo Boronic Esters: Intermediates for Ste-
reodirected Synthesis. Chem. Rev. 1989, 89, 1535–1551.
(18) Selected examples of C(sp3)–H borylation: (a) He, J.; Shao, Q.; Wu,
Q.; Yu, J.-Q. Pd(II)-Catalyzed Enantioselective C(sp3)–H Borylation. J.
Am. Chem. Soc. 2017, 139, 3344–3347. (b) He, J.; Jiang, H.; Takise, R.;
Zhu, R.-Y.; Chen, G.; Dai, H.-X.; Dhar, T. G. M.; Shi, J.; Zhang, H.; Cheng,
P. T. W.; Yu, J.-Q. Ligand-Promoted Borylation of C(sp3)–H Bonds with
Palladium(II) Catalysts. Angew. Chem. Int. Ed. 2016, 55, 785–789. (c)
Miyamura, S; Araki, M.; Suzuki, T.; Yamaguchi, J.; Itami, K. Stereodiver-
gent Synthesis of Arylcyclopropylamines by Sequential C–H Borylation
and Suzuki–Miyaura Coupling. Angew. Chem. 2015, 127, 860–865. (d) Shi,
Y.; Gao, Q.; Xu, S. Chiral Bidentate Boryl Ligand Enabled Iridium-
Catalyzed Enantioselective C(sp3)–H Borylation of Cyclopropanes. J. Am.
Chem. Soc. 2019, 141, 10599–10604. (e) Larsen, M. A.; Wilson, C.
V.; Hartwig, J. F. Iridium-Catalyzed Borylation of Primary Benzylic C–H
Bonds without a Directing Group: Scope, Mechanism, and Origins of Se-
lectivity. J. Am. Chem. Soc. 2015, 137, 8633– 8643. (f) Liskey, C.
W.; Hartwig, J. F. Iridium-Catalyzed Borylation of Secondary C–H Bonds
in Cyclic Ethers. J. Am. Chem. Soc. 2012, 134, 12422– 12425. (g) Ohmura,
T.; Torigoe, T.; Suginome, M. Catalytic Functionalization of Methyl
Group on Silicon: Iridium-Catalyzed C(sp3)–H Borylation of
Methylchlorosilanes. J. Am. Chem. Soc. 2012, 134, 17416– 17419.
(19) For recent examples of C(sp3)–H functionalization in amines: (a) Su,
B.; Lee, T.; Hartwig, J. F. Iridium-Catalyzed, β-Selective C(sp3)–H Silyla-
tion of Aliphatic Amines To Form Silapyrrolidines and 1,2-Amino Alco-
hols. J. Am. Chem. Soc. 2018, 140, 18032–18038. (b) Shao, Q.; Wu, Q.-
F.; He, J.; Yu, J.-Q. Enantioselective γ-C(sp3)–H Activation of Alkyl
Amines via Pd(II)/Pd(0) Catalysis. J. Am. Chem. Soc. 2018, 140, 5322–
5325. (c) Ye, J.; Kalvet, I.; Schoenebeck, F.; Rovis, T. Direct α-alkylation of
primary aliphatic amines enabled by CO2 and electrostatics. Nat.
Chem. 2018, 10, 1037–1041. (d) Kapoor, M.; Liu, D.; Young, M.
C. Carbon Dioxide-Mediated C(sp3)–H Arylation of Amine Substrates. J.
Am. Chem. Soc. 2018, 140, 6818–6822. (e) Liu, Y.; Ge, H. Site-selective C–
H arylation of primary aliphatic amines enabled by a catalytic transient
directing group. Nat. Chem. 2017, 9, 26–32. (f) Xu, Y.; Young, M.
C.; Wang, C.; Magness, D. M.; Dong, G. Catalytic C(sp3)–H Arylation of
Free Primary Amines with an exo Directing Group Generated In
Situ. Angew. Chem., Int. Ed. 2016, 55, 9084–9087. (g) Topczewski, J.
(14) Buesking, A. W.; Bacauanu, V.; Cai, I.; Ellman, J. A. Asymmetric Syn-
thesis of Protected α-Amino Boronic Acid Derivatives with an Air- and
Moisture-stable Cu(II) Catalyst. J. Org. Chem. 2014, 79, 3671–3677.
ACS Paragon Plus Environment