LETTER
Selective C-3 Opening of Aromatic 2,3-Epoxy Alcohols/Epoxides
509
Eto, M.; Tomizawa, C. J. Pestic. Sci. 1987, 12, 221.
(f) Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C. P.;
Singh, V. K. J. Am. Chem. Soc. 1987, 109, 7925.
(g) Takehara, J.; Hashiguchi, S.; Fujii, A.; Inoue, S. I.;
Ikaria, T.; Nayori, R. Chem. Commun. 1996, 233.
amine from the primary face side of the cyclodextrin.
From these H NMR spectroscopy studies it can be con-
cluded that, while the epoxide is still being retained in the
cavity, amine complexes from the primary side of cyclo-
dextrin (Figure 1) to attack at C-3 of the epoxy alcohol
resulting in high regioselectivities.
1
(3) (a) Hanson, R. M. Chem. Rev. 1991, 91, 437. (b)Caron,M.;
Sharpless, K. B. J. Org. Chem. 1985, 50, 1560.
(4) (a) Sasaki, M.; Tanino, K.; Hirai, A.; Miyashita, M. Org.
Lett. 2003, 5, 1789; and references cited therein;.
H
(b) Tomata, Y.; SasaKi, M.; Tanino, K.; Miyashita, M.
Tetrahedron Lett. 2003, 44, 8975.
H
O
O
O
H
(5) (a) Maruoka, K.; Sano, H.; Yamomoto, H. Chem. Lett. 1985,
599. (b) Onaka, M.; Sugita, K.; Izumi, Y. Chem. Lett. 1986,
1327. (c) Benedetti, F.; Berit, F.; Norbedo, S. Tetrahedron
Lett. 1998, 39, 7971. (d) Martin, R.; Isias, G.; Moyano, A.;
Pericas, M. A.; Riera, A. Tetrahedron 2001, 57, 6367.
(e) Onaka, M.; Sugita, K.; Takeuti, H.; Izumi, Y. J. Chem.
Soc., Chem. Commun. 1988, 1173. (f) Suzuki, T.; Saimoto,
H.; Tomioka, H.; Oshima, K.; Nozaki, H. Tetrahedron Lett.
1982, 23, 3597. (g) Roush, W. R.; Adam, M. A.; Peseckis, S.
M. Tetrahedron Lett. 1983, 24, 1377. (h) Takatsuto, S.;
Yazawa, N.; Ishiguro, M.; Morisaki, M.; Ikekawa, N. J.
Chem. Soc., Perkin Trans. 1 1984, 139. (i) Caron, M.;
Shapless, K. B. J. Org. Chem. 1985, 50, 1557. (j) Liu, Z.;
Yang, D.; Wu, L. Tetrahedron Lett. 2004, 45, 1565.
(k) Islas-Gonzalez, G.; Puigjaner, C.; Vidal-Ferran, A.;
Moyano, A.; Riera, A.; Pericas, M. A. Tetrahedron Lett.
2004, 45, 6337.
(6) (a) Caron, M.; Carlier, P. R.; Shapless, K. B. J. Org. Chem.
1988, 53, 5185. (b) Hayakawa, H.; Okda, N.; Miyazawa,
M.; Miyashita, M. Tetrahedron Lett. 1999, 40, 4589.
(c) Sasaki, M.; Tanino, K.; Miyashita, M. Org. Lett. 2001, 5,
1765.
(7) (a) Bartoli, G.; Bosco, M.; Carlone, A.; Locatelli, M.;
Massaccesi, M.; Melchiorre, P.; Sambri, L. Org. Lett. 2004,
6, 2173. (b) Chini, M.; Crotti, P.; Gardelli, C.; Macchia, F. J.
Org. Chem. 1994, 59, 4131. (c) Pasto, M.; Rodriguez, B.;
Riera, A.; Pericas, M. A. Tetrahedron Lett. 2003, 44, 8369.
(8) (a) Chang, B. L.; Ganesan, A. Bioorg. Med. Chem. Lett.
1997, 7, 1511. (b) Van de Weghe, P.; Collin, J. Tetrahedron
Lett. 1995, 36, 1649. (c) Pachon, L. D.; Gamez, P.; Brussel,
J. J. M.; Reedijk, J. Tetrahedron Lett. 2003, 44, 6025.
(d) Chakraborti, A. K.; Kondaskar, A. Tetrahedron Lett.
2003, 44, 8315. (e) Zhao, P.-Q.; Xu, L.-W.; Xia, C.-G.
Synlett 2004, 846.
(9) (a) Deyrup, J. A.; Moher, C. L. J. Org. Chem. 1969, 34, 134.
(b) Crooks, P. A.; Szyudler, R. Chem. Ind. (London) 1973,
1111. (c) Hou, X.-L.; Wu, J.; Dai, L.-X.; Xia, L.-J.; Tang,
M.-H. Tetrahedron: Asymmetry 1998, 9, 1747. (d) Sekar,
G.; Kamble, R. M.; Singh, V. K. Tetrahedron: Asymmetry
1999, 10, 3663. (e) Martinez, L. E.; Leighton, J. L.; Carsten,
D. H.; Jacobsen, E. N. J. Am. Chem. Soc. 1995, 117, 5897.
(f) Nugent, W. A. J. Am. Chem. Soc. 1992, 114, 2768.
(g) Larrow, J. F.; Schaus, S. E.; Jacobsen, E. N. J. Am. Chem.
Soc. 1996, 118, 7420. (h) Jacobsen, E. N.; Wu, M. H. In
Comprehensive Asymmetric Catalysis I-III; Jacobsen, E. N.;
Pfaltz, A.; Yamamoto, H., Eds.; Springer: Berlin, 1999,
Chap. 35.
(10) (a) Anastas, P. T.; Warner, J. C. Green Chemistry, Theory
and Practice; Oxford University Press: Oxford, 1998.
(b) Green Chemistry, Frontiers in Benign Chemical
Synthesis and Process; Anastas, P. T.; Williamson, T. C.,
Eds.; Oxford University Press: Oxford, 1998. (c) Green
Engineering; Anastas, P. T.; Heine, L. G.; Williamson, T. C.,
O
H
O
NH2
R
Figure 1
Thus, it has been shown for the first time that amino alco-
hols can be obtained with high regioselectivity from easily
accessible oxiranes and inexpensive amines in the pres-
ence of b-cyclodextrin in water. This methodology de-
scribes a simple, convenient and highly efficient method
for the synthesis of amino alcohols. The notable features
of this method are cleaner reaction profiles, high yields
and operational simplicity. Above all, these reactions are
carried out in water. This methodology will be a useful
addition to the modern synthetic methodology with the
ever-growing demand for eco-conscious chemical pro-
cesses and increasing interest in green chemistry.
General Procedure
b-Cyclodextrin (1 mmol) was dissolved in H2O (15 mL) at 60 °C,
epoxide (1 mmol) dissolved in acetone (1 mL) was added slowly
with stirring and cooled to r.t. Amine (1.0 mmol) was then added
and stirring was continued at r.t. After completion of the reaction
the organic material was extracted with EtOAc, the organic phase
was separated, filtered and washed with brine. The organic phase
was then dried (Na2SO4), filtered and the solvent was removed
under vacuum. The crude product was purified by silica gel column
chromatography using EtOAc–n-hexane (2:8) as eluent.
Acknowledgment
K S. thanks CSIR, New Delhi, India, for the award of a research
fellowship.
References
(1) IICT Communication no. 041209.
(2) (a) Ager, D. J.; Prakash, I.; Schaad, D. Chem. Rev. 1996, 96,
835. (b) Goodman, L. S.; Gilman, A. The Pharmocological
Basis of Therapeutics, 6th ed.; MacMillan: New York,
1980. (c) Rogers, G. A.; Parson, S. M.; Anderson, D. C.;
Nilsson, L. M.; Bhar, B. A.; Kornreich, W. D.; Kaufman, R.;
Jacobs, R. S.; Kirtman, B. J. Med. Chem. 1989, 32, 1217.
(d) Auvin-Guette, C.; Rebuffat, S.; Prigent, Y.; Bodo, B. J.
Am. Chem. Soc. 1992, 114, 2170. (e) Wu, S.; Takeya, R.;
Synlett 2005, No. 3, 506–510 © Thieme Stuttgart · New York