Letters
Journal of Medicinal Chemistry, 2007, Vol. 50, No. 18 4267
(
3) Parks, D. J.; Blanchard, S. G.; Bledsoe, R. K.; Chandra, G.; Consler,
T. G.; Kliewer, S. A.; Stimmel, J. B.; Willson, T. M.; Zavacki, A.
M.; Moore, D. D.; Lehmann, J. M. Bile acids: Natural ligands for
an orphan nuclear receptor. Science 1999, 284, 1365-1368.
4) Wang, H.; Chen, J.; Hollister, K.; Sowers, L. C.; Forman, B. M.
Endogenous bile acids are ligands for the nuclear receptor FXR/
BAR. Mol. Cell 1999, 3, 543-553.
(
(
(
5) Pellicciari, R.; Costantino, G.; Fiorucci, S. Farnesoid X receptor:
From structure to potential clinical applications. J. Med. Chem. 2005,
48, 5383-5403.
6) Maruyama, T.; Miyamoto, Y.; Nakamura, T.; Tamai, Y.; Okada, H.;
Sugiyama, E.; Nakamura, T.; Itadani, H.; Tanaka, K. Identification
of membrane-type receptor for bile acids (M-BAR). Biochem.
Biophys. Res. Commun. 2002, 298, 714-719.
(
7) Kawamata, Y.; Fujii, R.; Hosoya, M.; Harada, M.; Yoshida, H.; Miwa,
M.; Fukusumi, S.; Habata, Y.; Itoh, T.; Shintani, Y.; Hinuma, S.;
Fujisawa, Y.; Fujino, M. A G-protein-coupled receptor responsive
to bile acids. J. Biol. Chem. 2003, 278, 9435-9440.
(
8) Keane, R. M.; Gadacz, T. R.; Munster, A. M.; Birmingham, W.;
Winchurch, R. A. Impairment of human lymphocyte function by bile
salts. Surgery 1984, 95, 439-443.
Figure 2. (a) Docking experiments of 23(S)-Me-CDCA (7a) and (b)
(
9) Kimmings, A. N.; van Deventer, S. J.; Obertop, H.; Rauws, E. A.;
Gouma, D. J. Inflammatory and immunologic effects of obstructive
jaundice: Pathogenesis and treatment. J. Am. Coll. Surg. 1995, 181,
567-581.
2
3(R)-Me-CDCA (8a) into the crystal structure of FXR (1osv, chain
A). The main steric (orange and magenta surfaces) and electrostatic
hydrogen bonding (dashed lines) interactions with Met262 and Arg328
are highlighted. (c,d) Cartoons representing the bile acid binding site
of FXR (c) and TGR5 (d) as resulting from structure-activity
relationships of 23(S)-methyl CDCA derivatives (7a-c).
(10) Drivas, G.; James, O.; Wardle, N. Study of reticuloendothelial
phagocytic capacity in patients with cholestasis. Br. Med. J. 1976,
1, 1568-1569.
(
(
(
11) Pain, J. A.; Cahill, C. J.; Bailey, M. E. Perioperative complications
in obstructive jaundice: Therapeutic considerations. Br. J. Surg. 1985,
72, 942-945.
disposition of the potent FXR agonist 6ECDCA (1), cocrystal-
lized with the LBD in 1OSV.
12) Greve, J. W.; Gouma, D. J.; Buurman, W. A. Bile acids inhibit
endotoxin-induced release of tumor necrosis factor by monocytes:
An in vitro study. Hepatology 1989, 10, 454-458.
While 8a could be neatly docked into the LBD, 7a displayed
a severe steric clash between the 23(S)-methyl group and the
side chain of Met262 (Figure 2a,b). This unfavorable interaction
could be relieved by changing the conformation of the side chain
of 7a, but this could only be achieved by paying a considerable
energy cost (ca. 30 kcal/mol from the global minimum). It is
interesting to observe (Table 1) that the 6R-methyl (7b) and
13) Calmus, Y.; Weill, B.; Ozier, Y.; Chereau, C.; Houssin, D.; Poupon,
R. Immunosuppressive properties of chenodeoxycholic and urso-
deoxycholic acids in the mouse. Gastroenterology 1992, 103, 617-
621.
(14) Ikemoto, S.; Takahashi, M.; Tsunoda, N.; Maruyama, K.; Itakura,
H.; Kawanaka, K.; Tabata, I.; Higuchi, M.; Tange, T.; Yamamoto,
T. T.; Ezaki, O. Cholate inhibits high-fat diet-induced hyperglycemia
and obesity with acyl-CoA synthetase mRNA decrease. Am. J.
Physiol. 1997, 273, E37-45.
6R-ethyl (7c) derivatives of 7a show a significant FXR activity,
thus indicating that the energy gain induced by the 6R-alkyl
substituent can partially overcome the unfavorable interaction
of the 23(S)-methyl group with the side chain of Met262.
Taken together, these data indicate that the binding pocket
for BAs is not entirely conserved between TGR5 and FXR and
that minor modification on the side chain can result in a
significant selectivity (Figure 2c,d), thus allowing a pharma-
cological differentiation between genomic and nongenomic
effect of BA derivatives. Studies aimed at further elucidating
the structure-activity relationship of BA derivatives in regard
to TGR5 activation are under way.
(15) Watanabe, M.; Houten, S. M.; Mataki, C.; Christoffolete, M. A.; Kim,
B. W.; Sato, H.; Messaddeq, N.; Harney, J. W.; Ezaki, O.; Kodama,
T.; Schoonjans, K.; Bianco, A. C.; Auwerx, J. Bile acids induce
energy expenditure by promoting intracellular thyroid hormone
activation. Nature 2006, 439, 484-489.
(16) Maruyama, T.; Tanaka, K.; Suzuki, J.; Miyoshi, H.; Harada, N.;
Nakamura, T.; Miyamoto, Y.; Kanatani, A.; Tamai, Y. Targeted
disruption of G-protein-coupled bile acid receptor 1 (Gpbar1/M-Bar)
in mice. J. Endocrinol. 2006, 191, 197-205.
(17) Ito, F.; Hinuma, K.; Kanzaki, N.; Miki, T; Kawamata, Y.; Oi, S.;
Tawaeaishi, T.; Ishichi, Y.; Hirohashi, M. Preparation of aromatic
ring-fused cyclic compounds as TGR5 receptor agonists, Takeda
Chemical Industries Ltd., Japan, PN: WO2004067008.
(
18) Pellicciari, R.; Fiorucci, S.; Camaioni, E.; Clerici, C.; Costantino,
G.; Maloney, P. R.; Morelli, A.; Parks, D. J.; Willson, T. M. 6R-
Ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR
agonist endowed with anticholestatic activity. J. Med. Chem. 2002,
Acknowledgment. This work was supported by Intercept
Pharmaceuticals (New York), CNRS, INSERM, H oˆ pitaux
Universitaires de Strasbourg, and the European Union. We thank
Erregierre (Bergamo, Italy) for the gift of bile acids as starting
material.
45, 3569-3572.
(19) Pellicciari, R.; Costantino, G.; Camaioni, E.; Sadeghpour, B. M.;
Entrena, A.; Willson, T. M.; Fiorucci, S.; Clerici, C.; Gioiello, A.
Bile acid derivatives as ligands of the farnesoid X receptor. Synthesis,
evaluation, and structure-activity relationship of a series of body
and side chain modified analogues of chenodeoxycholic acid. J. Med.
Chem. 2004, 47, 4559-4569.
Supporting Information Available: Description of the syn-
thetic procedures, biological methods, computational methodologies,
and analytical analysis of all target compounds, and full crystal
(20) Pellicciari, R.; Gioiello, A.; Costantino, G.; Sadeghpour, B. M.; Rizzo,
G.; Meyer, U.; Parks, D. J.; Entrena-Guadix, A.; Fiorucci, S. Back
door modulation of the farnesoid X receptor: Design, synthesis, and
biological evaluation of a series of side chain modified cheno-
deoxycholic acid derivatives. J. Med. Chem. 2006, 49, 4208-4225.
data for 7d × CH
3
OH. This material is available free of charge
via the Internet at http://pubs.acs.org.
(
21) Pellicciari, R.; Cecchetti, S.; Natalini, B.; Roda, A.; Grigolo, B.; Fini,
A. Bile acids with cyclopropane-containing side chain. 2. Synthesis
and properties of 3R,7â-dihydroxy-22,23-methylene-5â-cholan-24-
oic acid (2-sulfoethyl)amide. J. Med. Chem. 1985, 28, 239-242.
References
(
1) Houten, S. M.; Watanabe, M.; Auwerx, J. Endocrine functions of
bile acids. EMBO J. 2006, 25, 1419-1425.
(22) Pellicciari, R.; Natalini, B.; Cecchetti, S.; Porter, B.; Roda, A.;
Grigolo, B.; Balducci, R. Bile acids with a cyclopropyl-containing
side chain. 3. Separation, identification, and properties of all four
stereoisomers of 3R,7â-dihydroxy-22,23-methylene-5â-cholan-24-
oic acid. J. Med. Chem. 1988, 31, 730-736.
(
2) Makishima, M.; Okamoto, A. Y.; Repa, J. J.; Tu, H.; Learned, R.
M.; Luk, A.; Hull, M. V.; Lustig, K. D.; Mangelsdorf, D. J.; Shan,
B. Identification of a nuclear receptor for bile acids. Science 1999,
284, 1362-1365.