Immobilisation of P450 BM-3 and an NADP Cofactor Recycling System
FULL PAPERS
For activityassa yi ng of immobilised FDH in combination
with immobilised P450 BM-3 5 mg of each immobilised
enzyme preparation (or 10 mg of the co-immobilised enzymes)
was added to 1 mL of FDH/BM-3 assaysolution. The reaction
[3] V. Urlacher, R. D. Schmid, Curr. Opin. Biotechnol. 2002,
13, 557 ± 564.
[
[
[
4] L. P. Wen, A. J. Fulco, J. Biol. Chem. 1987, 262, 6676 ±
682.
5] A. J. Fulco, R. T. Ruettinger, Life Sci. 1987, 40, 1769 ±
775.
6] S. S. Boddupalli, R. W. Estabrook, J. A. Peterson, J. Biol.
Chem. 1990, 265, 4233 ± 4239.
6
was started byaddition of 2.5 mL 10 mM NADP , again leading
to a 10-fold excess of 10-pNCA over NADP . Further steps
1
were carried out as described for immobilised BM-3 without
FDH, except that the reaction time was prolonged to 3 hours.
To quantifypNCA turnover, an extinction coefficient of p-
À1
À1
[7] G. Truan, M. R. Komandla, J. R. Falck, J. A. Peterson,
Arch. Biochem. Biophys. 1999, 366, 192 ± 198.
[8] T. W. Ost, C. S. Miles, J. Murdoch, Y. Cheung, G. A.
Reid, S. K. Chapman, A. W. Munro, FEBS Lett. 2000,
nitrophenolate at 410 nm of 13.2 mM cm was used. For
determining 10-pNCA turnover the respective reaction and
reference solutions were diluted in the ratio 1 to 10 with 50 mM
KPi, pH 8.1 to give absorption values in the linear range of the
photometer detector.
4
86, 173 ± 177.
[
9] Q. S. Li, U. Schwaneberg, M. Fischer, J. Schmitt, J. Pleiss,
S. Lutz-Wahl, R. D. Schmid, Biochim. Biophys. Acta
Turnover of b-Ionone, Naphthalene and n-Octane with
Immobilised P450 BM-3 Mutants
2
001, 1545, 114 ± 121.
[
10] Q. S. Li, U. Schwaneberg, P. Fischer, R. D. Schmid,
Chemistry 2000, 6, 1531 ± 1536.
[11] Q. S. Li, J. Ogawa, R. D. Schmid, S. Shimizu, Appl.
Environ. Microbiol. 2001, 67, 5735 ± 5739.
[12] D. Appel, S. Lutz-Wahl, P. Fischer, U. Schwaneberg,
R. D. Schmid, J. Biotechnol. 2001, 88, 167 ± 171.
1
(
00 mg of the respective immobilised P450 BM-3 mutant
35 nmol/g) was suspended in 9.3 mL 50 mM KPi pH 7.5,
supplemented with 100 mL 20 mM substrate in DMSO and
00 mL 10 mM NADPH. The reaction mixture was subse-
6
quentlyshaken for 2 h. After centrifugation the supernatant
was extracted twice with 4 mL diethyl ether. The combined
organic layers were dried with sodium sulphate and concen-
trated to a volume of 100 mL.
Reaction products and unreacted educts were identified by
GC analysis using a Fisons GC 8000 gas chromatograph
equipped with a flame ionisation detector (FID) and a 60 m
Zebron ZB 1 (polydimethylsiloxane) column. The temper-
ature gradients were as follows: b-Ionone : 1) 908C for 5 min, 2)
[
[
[
13] Q. S. Li, J. Ogawa, R. D. Schmid, S. Shimizu, FEBS Lett.
001, 508, 249 ± 252.
14] W. Tischer, F. Wedekind, Top. Curr. Chem. 1999, 200,
5 ± 126.
2
9
15] P. Fernandez-Salguero, C. Gutierrez-Merino, A. W.
Bunch, Enzyme Microb. Technol. 1993, 15, 100 ± 104.
[16] S. B. Lamb, D. C. Lamb, S. L. Kelly, D. C. Stuckey,FEBS
Lett. 1998, 431, 343 ± 346.
[17] M. Taylor, D. C. Lamb, R. J. Cannell, M. J. Dawson, S. L.
Kelly, Biochem Biophys. Res. Commun. 2000, 279, 708 ±
9
1
0 to 3008C at 108C/min, 3) 3008C for 10 min. Naphthalene: 1)
008C for 10 min, 2) 100 to 1408C at 28C/min, 3) 140 to 2508C
at 108C/min, 4) 2508C for 5 min. Octane: 1) 458C for 8 min, 2)
5 to 1008C at 28C/min, 3) 100 to 2408C at 108C/min. Pure
4
7
11.
samples of substrates and potential reaction products were
available. Equal amounts of these substances dissolved in
diethyl ether were applied to the column. From the resulting
GC trace the ratio of the peak areas corresponding to the
substrates and products were calculated. These ratios were
used to determine the molar ratios of substrates and products
emerging from the biotransformations. Therefore equal dieth-
yl ether-water partition coefficients for educts and products
were assumed.
[
[
18] I. Gill, Chem. Mater. 2001, 13, 3404 ± 3421.
19] Catalogue price of NADPH and NADH about 800 E/g
and 90 E/g, respectively.
20] G. J. Lye, J. M. Woodley, TIBTECH 1999, 17, 395 ± 402.
21] C. H. Lee, K. L. Parkin, Biotechnol. Bioeng. 2001, 75,
219 ± 227.
[
[
[22] A. Sanchez, J. L. del Rio, F. Valero, J. Lafuente, I. Faus,
C. Sola, J. Biotechnol. 2001, 84, 1 ± 12.
[
[
23] J. C. Chen, S. W. Tsai, Biotechnol. Prog. 2000, 16, 986 ±
92.
24] N. S. Dosanjh, J. Kaur, Biotechnol. Appl. Biochem. 2002,
6, 7 ± 12.
9
Acknowledgements
3
We thank BASF AG (Ludwigshafen, Germany) for financial
support and Professor Vladimir I. Tishkov for providing us with
NADP -dependent formate dehydrogenase.
[25] U. Schwaneberg, D. Appel, J. Schmitt, R. D. Schmid, J.
Biotechnol. 2000, 84, 249 ± 257.
[26] G. Gilardi, Y. T. Meharenna, G. E. Tsotsou, S. J. Sadeghi,
M. Fairhead, S. Giannini, Biosens. Bioelectron. 2002, 17,
1
33 ± 145.
[
[
27] J. Kazlauskaite, A. C. G. Westlake, L.-L. Wong, H. A. O.
Hill, Chem. Commun. 1996, 18, 2189 ± 2190.
28] F. Hollmann, B. Witholt, A. Schmid, J. Mol. Cat. B 2002,
References and Notes
[
1] J. T. Groves, Y.-H. Han, in Cytochrome P450: Structure,
Mechanism and Biochemistry, (Ed.: P. R. E. Ortiz de
Montellano), Plenum Press, New York, 1995, pp 3 ± 48.
2] E. T. Farinas, U. Schwaneberg, A. Glieder, F. H. Arnold,
Adv. Synth. Catal. 2001, 343, 601 ± 606.
7
91, 1 ± 10.
[29] V. I. Tishkov, A. G. Galkin, V. V. Fedorchuk, P. A.
Savitsky, A. M. Rojkova, H. Gieren, M. R. Kula, Bio-
technol. Bioeng. 1999, 64, 187 ± 193.
[
Adv. Synth. Catal. 2003, 345, 802 ± 810
asc.wiley-vch.de
¹ 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
809