LETTER
Catalytic Enantioselective Ring-Cleavage Reaction
2001
5
d,
(3) (a) Takabe, K.; Iida, Y.; Hiyoshi, H.; Ono, M.; Hirose, Y.;
Fukui, Y.; Yoda, H.; Mase, N. Tetrahedron: Asymmetry
2000, 11, 4825. (b) Takabe, K.; Mase, N.; Hashimoto, H.;
Tsuchiya, A.; Ohbayashi, T.; Yoda, H. Bioorg. Med. Chem.
Lett. 2003, 13, 1967. (c) Murakami, M.; Kamaya, H.;
Kaneko, C.; Sato, M. Tetrahedron: Asymmetry 2003, 14,
201. (d) Takabe, K.; Hashimoto, H.; Sugimoto, H.; Nomoto,
M.; Yoda, H. Tetrahedron: Asymmetry 2004, 15, 909.
R
R
R
3
(20 mol%),
Et2O
1
) BnOC(CCl3) = NH,
TMSOTf
O
O
HO
O
Ar
CH2Cl2,
50 °C
BnO
OH
2a–e
2) TFA,
–
and then
aq NaOH
Ar
a–e
Nu
1
7a–e
4
t
Ar = 1-Naph
Nu = –CH2COS Bu
(
4) (a) Crout, D. H. G.; Gaudet, V. S. B.; Laumen, K.;
Scheme 2
Schneider, M. P. J. Chem. Soc., Chem. Commun. 1986, 808.
(
b) Xie, Z.-F.; Nakamura, I.; Suemune, H.; Sakai, K. J.
Table 2 Asymmetric Desymmetrization of 2-Substituted 1,3-
Propanediols
Chem. Soc., Chem. Commun. 1988, 9667. (c) Morgan, B.;
Dodds, D. R.; Zaks, A.; Andrews, D. R.; Klesse, R. J. Org.
Chem. 1997, 62, 7736. (d) Claudia, N.; Williams, J. M. J.
Adv. Synth. Catal. 2003, 345, 835.
Entry R
7
Yield syn:antia 12
%)
Yield eeb
(
(%)
66
54
61
62
52
(%)
88
85
92
67
56
(
(
5) For the use of 1-ethoxyvinyl 2-furanoate as an acylating
agent to circumvent the problem, see; Akai, S.; Naka, T.;
Fujita, T.; Takebe, Y.; Tsujino, T.; Kita, Y. J. Org. Chem.
2002, 67, 411.
6) (a) Mukaiyama, T.; Tanabe, Y.; Shimizu, M. Chem. Lett.
1984, 401. (b) Ichikawa, J.; Asami, M.; Mukaiyama, T.
Chem. Lett. 1984, 949. (c) Harada, T.; Hayashiya, T.; Wada,
I.; Iwaake, N.; Oku, A. J. Am. Chem. Soc. 1987, 109, 527.
1
2
3
4
5
Ph
7a
81
84
84
86
91
15:1
–c
12a
12b
12c
12d
12e
4-MeOC H4 7b
6
3-MeC H4
7c
7d
7e
–c
6
i-Pr
4.1:1
4.5:1
(d) Harada, T.; Ikemura, Y.; Nakajima, H.; Ohnishi, T.; Oku,
Me
A. Chem. Lett. 1990, 1441. (e) Otera, J.; Sakamoto, K.;
Takao, T.; Orita, A. Tetrahedron Lett. 1998, 39, 3201.
(f) Akeboshi, T.; Ohtsuka, Y.; Ishihara, T.; Sugai, T. Adv.
Synth. Catal. 2001, 343, 624.
a
1
Determined by H NMR (500 MHz) analysis.
b
Determined by chiral phase HPLC analysis (Chiralpak AD-H and
Chiralcel OD for 12a–c and 12d,e, respectively).
c
(7) For highly enantioselective, catalytic desymmetrization
leading to mono-benzyloxy derivatives, see: Trost, B. M.;
Mino, T. J. Am. Chem. Soc. 2003, 125, 2410.
Not determined.
Ring-cleavage reaction of other 1-naphthyl acetals 4b–e
proceeded smoothly as well by using 20 mol% of OXB 3
and dimethylsilyl derivative 5d to give the corresponding
products 7b–e in high yield (entries 2–5). Benzylation of
(8) Harada, T.; Imai, K.; Oku, A. Synlett 2002, 972.
(
9) For OXB-mediated asymmetric desymmetrization other
prochiral polyols, see: (a) Kinugasa, M.; Harada, T.; Oku,
A. J. Am. Chem. Soc. 1997, 119, 9067. (b) Kinugasa, M.;
Harada, T.; Oku, A. Tetrahedron Lett. 1998, 39, 4523.
4
b–e followed by TFA treatment afforded enantiomeri-
(
c) Harada, T.; Nakamura, T.; Kinugasa, M.; Oku, A.
cally enriched 3-benzyloxy-1-propanols 12b–e. 2-Aryl
derivatives 12b,c were obtained with high enantioselec-
tivities comparable to 12a. On the other hand, ring-cleav-
age reactions of isopropyl and methyl derivative 4d,e
were less selective resulting in moderate ee of the corre-
sponding desymmetrization products 12d,e.
Tetrahedron Lett. 1999, 40, 503. (d) Harada, T.; Yamanaka,
H.; Oku, A. Synlett 2001, 61. (e) Harada, T.; Sekiguchi, K.;
Nakamura, T.; Suzuki, J.; Oku, A. Org. Lett. 2001, 3, 3309.
(
10) Acetal 4a was prepared from 2-phenyl-1,3-propanediol and
1-naphthaldehyde (1.1 equiv) under the conventional
conditions (p-TsOH, toluene reflux). A pure trans-isomer
isolated by recrystallization from EtOAc and hexane (74%
yield) was used in ring-cleavage reaction.
In summary, asymmetric desymmetrization of 2-sub-
stituted 1,3-propanediols leading to the enantiomerically
enriched 3-benzyloxy-1-propanol derivatives 12 was de-
veloped by using OXB-catalyzed enantioselective ring-
cleavage reaction of the cyclic acetal derivatives 4. The
use of dimethylsilyl ketene acetals 5c,d is essential for the
facile catalytic ring-cleavage reaction. The characteristic
behavior of the dimethylsilyl group disclosed in the
present study might be utilized in relevant Lewis acid-
catalyzed reactions.
(
(
11) For the use of diethyl ether as an additive, see ref. 8 and 9d.
12) Harada, T.; Nakamura, T.; Kinugasa, M.; Oku, A. J. Org.
Chem. 1999, 64, 7594.
13) The overall enantioselectivity of 6, for example, is
calculated by [(syn-6 + anti-6) – (ent-syn-6 + ent-anti-6)}/
(
{
(syn-6 + anti-6) + (ent-syn-6 + ent-anti-6)].
(14) Representative Procedure for Catalytic Ring-Cleavage
Reaction (Table 1, Entry 6).
To a solution of N-tosyl-3-(2-naphthyl)-L-alanine (57.5 mg,
0
.15 mmol) in CH Cl (1.6 mL) under argon atmosphere at
2 2
r.t. was added dibromo-4-chlorophenylborane (23 mL, 0.15
mmol). After being stirred for 30 min, the mixture was
concentrated in vacuo. To a solution of the resulting OXB 3
in CH Cl (1.5 mL) at -50 °C were added dimethylsilyl
References
2
2
(
1) (a) Scott, J. W. In Asymmetric Synthesis, Vol. 4; Morrison,
J. D.; Scott, J. W., Eds.; Academic Press: New York, 1984,
ketene acetal 5d (428 mg, 2.25 mmol), Et O (117 mL), and a
2
toluene (1.5 mL) solution of acetal 4a (218 mg, 0.75 mmol).
After being stirred for 18 h at -50 °C, the mixture was
1. (b) For a recent example, see: Fellows, I. M.; Kaelin, D.
E. Jr.; Martin, S. F. J. Am. Chem. Soc. 2000, 122, 10781.
2) (a) Drauz, D.; Waldmann, H. Enzyme Catalysis in Organic
Synthesis; VCH: Weinheim / New York, 1995.
quenched by the addition of aq NaHCO and filtered. The
3
(
filtrate was extracted three times with Et O. The organic
2
layers were dried (MgSO ) and concentrated in vacuo. The
4
(
b) Schoffers, E.; Golebiowski, A.; Johnson, C. R.
residue was treated with aq 70% HOAc (0.5 mL) in THF (0.5
Tetrahedron 1996, 52, 3769. (c) Garcia-Urdiales, E.;
Alfonso, I.; Gotor, V. Chem. Rev. 2005, 105, 313.
mL) at r.t. for 1 h. The mixture was diluted with H O,
2
Synlett 2005, No. 13, 1999–2002 © Thieme Stuttgart · New York