6 (a) S. Yang, X. W. Gao, C. L. Diao, B. A. Song, L. H. Jin, G. F. Xu,
G. P. Zhang, W. Wang, D. Y. Hu, W. Xue and P. Lu, Chin. J. Chem.,
2006, 24, 1581–1588; (b) G.-P. Zhang, B.-A. Song, W. Xue, L.-H. Jin,
D.-Y. Hu, Q.-Q. Wan, P. Lu, S. Yang, Q.-Z. Li and G. Liu, J. Fluorine
Chem., 2006, 127, 48–53; (c) Y.-S. Xu, K. Yan, B.-A. Song, G.-F. Xu, S.
Yang, W. Xue, D.-Y. Hu, P. Lu, G.-P. Ouyang, L.-H. Jin and Z. Chen,
Molecules, 2006, 11, 666–676; (d) B.-A. Song, Y.-L. Wu, S. Yang, D.-Y.
Hu, X.-Q. He and L.-H. Jin, Molecules, 2003, 8, 186–192; (e) D. Y. Hu,
Q. Q. Wan, S. Yang, B.-A. Song, P. S. Bhadury, L. H. Jin, K. Yan, F.
Liu, Z. Chen and W. Xue, J. Agric. Food Chem., 2008, 56, 998–1001.
7 L. H. Jin, B. A. Song, G. P. Zhang, R. Q. Xu, S. M. Zhang, X. W. Gao,
D. Y. Hu and S. Yang, Bioorg. Med. Chem. Lett., 2006, 16, 1537–1543.
8 N. Dieltiens, K. Moonen and C. V. Stevens, Chem.–Eur. J., 2006, 13,
203–214.
9 T. K. Olszewski, B. Boduszek, S. Sobek and H. Kozlowski, Tetrahedron,
2006, 62, 2183–2189.
10 P. Kafarski and B. Lejczak, Curr. Med. Chem. Anti-Cancer Agents,
2001, 1, 301–312.
11 T. Lintunen and J. T. Yli-Kauhaluoma, Bioorg. Med. Chem. Lett., 2000,
10, 1749–1750.
(h) Y. Huang, A. K. Unni, A. N. Thadani and V. H. Rawal, Nature,
2003, 424, 146–146; (i) B. M. Nugent, R. A. Yoder and J. N. Johnston,
J. Am. Chem. Soc., 2004, 126, 3418–3419; (j) N. T. McDougal, W. L.
Trevellini, S. A. Rodgen, L. T. Kliman and S. E. Schaus, Adv. Synth.
Catal., 2004, 346, 1231–1240; (k) N. Momiyama and H. Yamamoto, J.
Am. Chem. Soc., 2005, 127, 1080–1081; (l) A. K. Unni, N. Takenaka, H.
Yamamoto and V. H. Rawal, J. Am. Chem. Soc., 2005, 127, 1336–1337;
(m) K. Matsui, S. Takizawa and H. Sasai, J. Am. Chem. Soc., 2005, 127,
3680–3681.
22 S. Niu and M. B. Hall, Chem. Rev., 2000, 100, 353–406.
23 M. Yamanaka, J. Itoh, K. Fuchibe and T. Akiyama, J. Am. Chem. Soc.,
2007, 129, 6756–6764.
24 For recent theoretical studies of transition metal-catalyzed reactions,
see: (a) F.-Q. Shi, X. Li, X. Y. Xia, L. Zhang and Z.-X. Yu, J. Am.
Chem. Soc., 2007, 129, 15503–15512; (b) C. Nieto-Oberhuber, M. P.
Mun˜oz, E. Bun˜uel, C. Nevado, D. J. Ca´rdenas and A. M. Echavarren,
Angew. Chem., Int. Ed., 2004, 43, 2402–2406; (c) C. Nieto-Oberhuber,
S. Lo´pez, E. Jime´nez-Nu´n˜ez and A. M. Echavarren, Chem. Eur. J.,
2006, 12, 5916–5923; (d) C. Nieto-Oberhuber, S. Lo´pez, M. P. Mun˜oz,
D. J. Ca´rdenas, E. Bun˜uel, C. Nevado and A. M. Echavarren, Angew.
Chem., Int. Ed., 2005, 44, 6146–6148; (e) Y.-D. Wu and Z.-X. Yu, J.
Am. Chem. Soc., 2001, 123, 5777–5786; (f) Z.-X. Yu and K. N. Houk,
J. Am. Chem. Soc., 2003, 125, 13825–13830; (g) Z.-X. Yu, P. A. Wender
and K. N. Houk, J. Am. Chem. Soc., 2004, 126, 9154–9155; (h) O. N.
Faza, C. S. Lopez, R. Alvarez and A. R. de Lera, J. Am. Chem. Soc.,
2006, 128, 2434–2437.
25 Gaussian 98 (Revision A.11), M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzaweski,
J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J.
M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J.
Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli,
C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q.
Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. Ciolowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D.
J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C.
Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M.
W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. Pople,
Gaussian, Inc., Pittsburgh, PA, 1998.
12 W. Liu, C. J. Rogers, A. J. Fisher and M. D. Toney, Biochemistry, 2002,
41, 12320–12328.
13 (a) K. M. Yager, C. M. Taylor and A. B. Smith, III, J. Am. Chem. Soc.,
1994, 116, 9377–9378; (b) A. B. Smith, III, K. M. Yager and C. M.
Taylor, J. Am. Chem. Soc., 1995, 117, 10879–10888; (c) I. M. Lefebvre
and S. A. Evans, Jr., J. Org. Chem, 1997, 62, 7532–7533; (d) F. A. Davis,
S. Lee, H. Yan and D. D. Titus, Org. Lett., 2001, 3, 1757–1760.
14 (a) H. Sasai, S. Arai, Y. Tahara and M. Shibasaki, J. Org. Chem.,
1995, 60, 6656–6657; (b) H. Gro¨eger, Y. Saida, S. Arai, J. Martens,
H. Sasai and M. Shibasaki, Tetrahedron Lett., 1996, 37, 9291–9292;
(c) H. Gro¨eger, Y. Saida, H. Sasai, K. Yamaguchi, J. Martens and M.
Shibasaki, J. Am. Chem. Soc., 1998, 120, 3089–3103; (d) Y. Saida, H.
Gro¨eger, W. Maison, N. Durot, H. Sasai, M. Shibasaki and J. Martens,
J. Org. Chem., 2000, 65, 4818–4825; (e) S. Kobayashi, H. Kiyohara, Y.
Nakamura and R. Matsubara, J. Am. Chem. Soc., 2004, 126, 6558–
6559.
15 (a) F. Hammerschmidt and M. Hanbauer, J. Org. Chem., 2000, 65,
6121–6131; (b) C. De´jugnat, G. Etemad-Moghadam and I. Rico-Lattes,
Chem. Commun., 2003, 1858–1859.
16 O. I. Kolodiazhnyi, Tetrahedron: Asymmetry, 1998, 9, 1279–1332.
17 G. D. Joly and E. N. Jacobsen, J. Am. Chem. Soc., 2004, 126, 4102–4103.
18 T. Akiyama, H. Morita, J. Itoh and K. Fuchibe, Org. Lett., 2005, 7,
2583–2585.
26 (a) S. Dapprich, I. Komiromi, K. S. Byun, K. Morokuma and M. J.
Frisch, J Mol. Struct. THEOCHEM, 1999, 461–462, 1–21; (b) W. Deng,
T. Vreven, M. J. Frisch and K. B. Wiberg, J Mol. Struct. THEOCHEM,
2006, 775, 93–99.
27 (a) R. Wieczorek and J. J. Dannenberg, J. Am. Chem. Soc., 2004, 126,
12278–12279; (b) R. Wieczorek and R. J. J. Dannenberg, J. Am. Chem.
Soc., 2004, 126, 14198–14205; (c) M. Tsai, Y. Xu and J. J. Dannenberg,
J. Am. Chem. Soc., 2005, 127, 14130–14131; (d) R. Wieczorek and J.
J. Dannenberg, J. Am. Chem. Soc., 2005, 127, 14534–14535; (e) R.
Wieczorek and J. J. Dannenberg, J. Am. Chem. Soc., 2005, 127, 17216–
17223.
28 (a) M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart,
J. Am. Chem. Soc., 1985, 107, 3902–3909; (b) J.-M. Pons, M. Oblin,
A. Pommier, M. Rajzmann and D. Liotard, J. Am. Chem. Soc., 1997,
119, 3333–3338; (c) J. R. H. anke, G. Haufe, E.-U. Wurthwein and J.
H. Borkent, J. Am. Chem. Soc., 1996, 118, 6031–6035; (d) M. Sola, M.
Duran and J. Mestres, J. Am. Chem. Soc., 1996, 118, 8920–8924.
29 (a) V. Barone, M. Cossi and J. Tomasi, J. Comput. Chem., 1998, 19,
404–417; (b) Y. Takano and K. N. Houk, J. Chem. Theory Comput.,
2005, 1, 70–77.
30 (a) R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford
University Press, Oxford, 1990; (b) F. Biegler-Ko¨nig, J. Scho¨nbohm and
D. J. Bayles, J. Comput. Chem., 2001, 22, 545–559; (c) F. Biegler-Ko¨nig
and J. Scho¨nbohm, J. Comput. Chem., 2002, 23, 1489–1494.
31 (a) P. L. A. Popelier, J. Phys. Chem. A., 1998, 102, 1873–1878; (b) R. F.
W. Bader and H. Essen, J. Chem. Phys., 1984, 80, 1943–1960.
32 L. Sobczyk, S. J. Grabowski and T. M. Krygowski, Chem. Rev., 2005,
105, 3513–3560.
19 To a solution of an imine (27.1 mg, 0.1 mmol) and Brønsted acid 1c
(7.7 mg, 0.01 mmol) in toluene (1 mL) was added diethyl phosphite
(26 mL, 0.2 mmol). The reaction was stirred at room temperature for
24 h, after which the a-amino phosphonate was obtained through
direct purification of the reaction mixture by column chr◦omatography
on silica gel (petroleum ether–EtOAc, 2:1). mp: 147–148 C. 1H NMR
(500 MHz, CDCl3) d = 1.135 (3H, t, J = 7.1 Hz, CH2CH3), 1.326
(3H, t, J = 7.1 Hz, CH2CH3), 2.527 (3H, s, Ar-CH3), 3.860 (1H, m,
Ar-CHNH), 4.244 (4H, m, OCH2), 5.774 (1H, d, J = 11.1 Hz, NH),
6.984–7.368 (m, 7H, Ar-H). 13C NMR (125 MHz, CDCl3): 164.89,
159.85, 150.55, 130.51, 130.04, 129.32, 126.81, 124.61, 122.93, 122.09,
118.33, 115.55, 63.77, 49.67, 18.30, 16.51, 16.26. 19F NMR (470 MHz,
CDCl3):d -117.24. 31P NMR (202 MHz, CDCl3):d 20.59. Elemental
analysis: C, 55.87, H, 5.43, N, 6.86; calculated from C19H22FN2O3PS.
Observed: C, 55.80, H, 5.20, N, 6.76. HPLC: Chiralpak AD-H,
n-hexane-EtOH, 95:5, 1.0 mL min-1, 254 nm: tR(major) = 5.7 min,
tR(minor) = 6.4 min.
20 (a) S. J. Connon, Angew. Chem., Int. Ed., 2006, 45, 3909–3912; (b) M.
S. Taylor and E. N. Jacobsen, Angew. Chem., Int. Ed., 2006, 45, 1520–
1543; (c) C. Bolm, T. Rantanen, I. Schiffers and L. Zani, Angew. Chem.,
Int. Ed., 2005, 44, 1758–1763; (d) P. M. Pihko, Angew. Chem., Int. Ed.,
2004, 43, 2062–2064; (e) P. R. Schreiner, Chem. Soc. Rev., 2003, 32,
289–296.
21 (a) S. Mitsumori, H. Zhang, P. H.-Y. Cheong, K. N. Houk, F. Tanaka
and C. F. Barbas, III, J. Am. Chem. Soc., 2006, 128, 1040–1041; (b) G.
Vayner, K. N. Houk and Y.-K. Sun, J. Am. Chem. Soc., 2004, 126, 199–
203; (c) P. H.-Y. Cheong and K. N. Houk, J. Am. Chem. Soc., 2004,
126, 13912–13913; (d) F. R. Clemente and K. N. Houk, J. Am. Chem.
Soc., 2005, 127, 11294–11302; (e) A. G. Wenzel and E. N. Jacobsen, J.
Am. Chem. Soc., 2002, 124, 12964–12965; (f) N. T. McDougal and S.
E. Schaus, J. Am. Chem. Soc., 2003, 125, 12094–12095; (g) T. Okino, Y.
Hoashi and Y. Takemoto, J. Am. Chem. Soc., 2003, 125, 12672–12673;
33 It is found that the electronic energy of the sum of 2-component
complex and diethyl phosphite is larger than the corresponding
transition state TS4, which implies that the transition state involving
2-component complex and diethyl phosphite must be less stable than
TS4, therefore, the pathway involving 2-component complex can not
compete with those already considered.
34 Y. Saida, H. Gro¨ger, W. Maison, N. Durot, H. Sasai, M. Shibasaki and
J. Martens, J. Org. Chem., 2000, 65, 4818.
1298 | Org. Biomol. Chem., 2009, 7, 1292–1298
This journal is
The Royal Society of Chemistry 2009
©