ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
Nickel-Catalyzed Amination of Aryl
Sulfamates and Carbamates Using
an Air-Stable Precatalyst
000–000
Liana Hie, Stephen D. Ramgren, Tehetena Mesganaw, and Neil K. Garg*
Department of Chemistry and Biochemistry, University of California, Los Angeles,
Los Angeles, California 90095-1569, United States
Received July 5, 2012
ABSTRACT
A facile nickel-catalyzed method to achieve the amination of synthetically useful aryl sulfamates and carbamates is reported. Contrary to most Ni-
catalyzed amination reactions, this user-friendly approach relies on an air-stable Ni(II) precatalyst, which, when employed with a mild reducing
agent, efficiently delivers aminated products in good to excellent yields. The scope of the method is broad with respect to both coupling partners
and includes heterocyclic substrates.
Nickel-catalyzed cross-couplings of phenol-based elec-
trophiles have received considerable attention in recent
because of their pronounced stability and capacity todirect
the installation of functional groups onto an aromatic ring
1
years. Attractive aspects of such processes include the low
1À3
through directed ortho-metalation
2
or electrophilic aro-
matic substitution processes. Although carbonÀcarbon
d
cost of Ni and the many benefits that pertain to utilizing
phenol derivatives. Of the substrates widely explored, aryl
carbamates and sulfamates are particularly attractive
bond forming reactions using aryl sulfamates and carbamates
(
4) For the use of aryl carbamates in CÀC bond forming processes,
see: (a) Quasdorf, K. W.; Riener, M.; Petrova, K. V.; Garg, N. K. J. Am.
Chem. Soc. 2009, 131, 17748–17749. (b) Finch, A. A.; Blackburn, T.;
Snieckus, V. J. Am. Chem. Soc. 2009, 131, 17750–17752. (c) Xi, L.; Li,
B.-J.; Wu, Z.-H.; Lu, X.-Y.; Guan, B.-T.; Wang, B.-Q.; Zhao, K.-Q.;
Shi, Z.-J. Org. Lett. 2010, 12, 884–887. (d) Yoshikai, N.; Matsuda, H.;
Nakamura, E. J. Am. Chem. Soc. 2009, 131, 9590–9599. (e) Quasdorf,
K. W.; Antoft-Finch, A.; Liu, P.; Silberstein, A. L.; Komaromi, A.;
Blackburn, T.; Ramgren, S. D.; Houk, K. N.; Snieckus, V.; Garg, N. K.
J. Am. Chem. Soc. 2011, 133, 6352–6363. (f) Baghbanzadeh, M.; Pilger,
C.; Kappe, C. O. J. Org. Chem. 2011, 76, 1507–1510. (g) Dallaire, C.;
Kolber, I.; Gingras, M. Org. Synth. 2002, 78, 42. (h) Sengupta, S.; Leite,
M.; Raslan, D. S.; Quesnelle, C.; Snieckus, V. J. Org. Chem. 1992, 57,
4066–4068.
(5) For the use of aryl sulfamates in CÀC bond forming processes,
see: (a) Civicos, J. F.; Gholinejad, M.; Alonso, D. A.; Najera, C. Chem.
Lett. 2011, 40, 907–909. (b) Shirbin, S. J.; Boughton, B. A.; Zammit,
S. C.; Zanatta, S. D.; Marcuccio, S. M.; Hutton, C. A.; Williams, S. J.
Tetrahedron Lett. 2010, 51, 2971–2974. (c) Albaneze-Walker, J.; Raju,
R.; Vance, J. A.; Goodman, A. J.; Reeder, M. R.; Liao, J.; Maust, M. T.;
Irish, P. A.; Espino, P.; Andrews, D. R. Org. Lett. 2009, 11, 1463–1466.
(d) Ackermann, L.; Barf u€ sser, S.; Pospech, J. Org. Lett. 2010, 12, 724–
726. (e) Leowanawat, P.; Zhang, N.; Resmerita, A.-M.; Rosen, B. M.;
Percec, V. J. Org. Chem. 2011, 76, 9946–9955. (f) When, P. M.; Du Bois,
J. Org. Lett. 2005, 7, 4685–4688. (g) Chen, G.-J.; Han, F.-S. Eur. J. Org.
Chem. 2012, 3575–3579. (h) Zhang, N.; Hoffman, D. J.; Gutsche, N.;
Gupta, J.; Percec, V. J. Org. Chem. 2012, 77, 5956–5964; see also refs 2e,
4a, 4e, and 4f.
(1) For recent reviews regarding the cross-coupling of phenolic
derivatives, see: (a) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.;
Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011,
111, 1346–1416. (b) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J. Chem.;
Eur. J. 2011, 17, 1728–1759. (c) Yu, D.-G.; Li, B.-J.; Shi, Z.-J. Acc.
Chem. Res. 2010, 43, 1486–1495. (d) Knappke, C. E. I.; Jacobi von
Wangelin, A. Angew. Chem., Int. Ed. 2010, 49, 3568–3570. (e) Goossen,
L. J.; Goossen, K.; Stanciu, C. Angew. Chem., Int. Ed. 2009, 48, 3569–
3571.
(
2) (a) Snieckus, V. Chem. Rev. 1990, 90, 879–933. (b) Hartung, C. G.;
Snieckus, V. In Modern Arene Chemistry; Astruc, D., Ed.; WileyÀVCH:
New York, 2002; pp 330À367. (c) Macklin, T.; Snieckus, V. In Handbook
of CÀH Transformations; Dyker, G., Ed.; WileyÀVCH: New York, 2005;
pp 106À119. (d) Smith, M. B.; March, J. In March’s Advanced Organic
Chemistry, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2007; p 670.
(e) Macklin, T. K.; Snieckus, V. Org. Lett. 2005, 7, 2519–2522.
(3) Aryl carbamates may also be ortho-functionalized through tran-
sition metal-catalyzed processes; see: (a) Bedford, R. B.; Webster, R. L.;
Mitchell, C. J. Org. Biomol. Chem. 2009, 7, 4853–4857. (b) Zhao, X.;
Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 5837–5844. (c)
Nishikata, T.; Abela, A. R.; Huang, S.; Lipshutz, B. H. J. Am. Chem.
Soc. 2010, 132, 4978–4979. (d) Yamazaki, K.; Kawamorita, K.; Ohmiya,
H.; Sawamura, M. Org. Lett. 2010, 12, 3978–3981. (e) Feng, C.; Loh,
T.-P. Chem. Commun. 2011, 47, 10458–10460. (f) Gong, T.-J.; Xiao, B.;
Liu, Z.-J.; Wan, J.; Xu, J.; Luo, D.-F.; Fu, Y.; Liu, L. Org. Lett. 2011, 13,
3235–3237.
1
0.1021/ol301847m r XXXX American Chemical Society