C. Taubmann et al. / Journal of Organometallic Chemistry 693 (2008) 2231–2236
2235
at the end to start the experiment (t = 0 min). Conversions and
Acknowledgement
yields were determined by GC analysis.
We gratefully acknowledge support and funding from NanoCat,
an International Graduate Program within the ‘‘Elite Network
Bavaria”, as well as the Fonds der Chemischen Industrie (Frankfurt
a. Main).
4.3. Single crystal X-ray structure determination of compound 4 ꢁ ACN
General: Crystal data and details of the structure determination
are presented in Table 4. A suitable single-crystal for the X-ray dif-
fraction study was grown with standard cooling techniques. The
selected crystals was stored under perfluorinated ether, trans-
ferred in a Lindemann capillary, fixed, and sealed. Preliminary
examination and data collection were carried out on an area
detecting system with graphite-monochromated Mo Ka radiation
(k = 0.71073 Å, OXFORD DIFFRACTION, Xcalibur, j-CCD; sealed tube, En-
hance X-ray Source, SPELLMAN, DF3). The unit cell parameters were
obtained by full-matrix least-squares refinements during the scal-
ing procedure. Data collection were performed at low tempera-
tures (T = 153 K, OXFORD CRYOSYSTEMS cooling device). The crystal was
measured with nine data sets in rotation scan modus (D//
Dx = 2.00°; dx = 50). Intensities were integrated and the raw data
were corrected for Lorentz, polarization, and, arising from the scal-
ing procedure for latent decay and absorption effects. The struc-
tures were solved by a combination of direct methods and
difference Fourier syntheses. All non-hydrogen atoms were refined
with anisotropic displacement parameters. Methyl hydrogen atoms
were calculated as a part of rigid rotating groups, with dC–H = 0.98 Å
and iso(H) = 1.5Ueq(C). All other hydrogen atoms were placed in
ideal positions and refined using a riding model, with aromatic
dC–H distances of 0.95 Å, and Uiso(H) = 1.2Ueq(C). Full-matrix least-
squares refinements were carried out by minimizing
Appendix A. Supplementary material
CCDC 680443 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
References
[1] (a) J. Louie, J.F. Hartwig, Tetrahedron Lett. 36 (1995) 3609;
(b) A.S. Guram, R.A. Rennels, S.L. Buchwald, Angew. Chem. 107 (1995) 1456;
Angew. Chem., Int. Ed. 34 (1995) 1348.
[2] For an overview see (a) B. Schlummer, U. Scholz, Adv. Synth. Catal. 346 (2004)
1599;
(b) A. de Meijere, F. Diederich (Eds.), Metal-Catalyzed Cross-Coupling
Reactions, 2nd ed., Wiley-VCH, Weinheim, Germany, 2004;
(c) J.F. Hartwig, in: E. Negishi (Ed.), Handbook of Organopalladium Chemistry
for Organic Synthesis, Wiley, New York, 2002. pp. 1051.
[3] (a) E.A.B. Kantchev, C.J. O’Brien, M.G. Organ, Angew. Chem. 119 (2007) 2824;
Angew. Chem., Int. Ed. 46 (2007) 2768;
(b) V. Farina, Adv. Synth. Catal. 346 (2004) 1553;
(c) W.A. Herrmann, K. Öfele, D.v. Preysing, S.K. Schneider, J. Organomet. Chem.
687 (2003) 229;
(d) R.B. Bedford, Chem. Commun. (2003) 1787;
(e) W.A. Herrmann, Angew. Chem. 114 (2002) 1342; Angew. Chem., Int. Ed. 41
(2002) 1290;
(f) W.A. Herrmann, K. Denk, C.W.K. Gstöttmayr, in: B. Cornils, W.A. Herrmann
(Eds.), Applied Homogeneous Catalysis with Organometallic Compounds, 2nd
ed., Wiley-VCH, Weinheim, Germany, 2002;
(g) W.A. Herrmann, C. Köcher, Angew. Chem. 109 (1997) 2256; Angew. Chem.,
Int. Ed. 36 (1997) 2126.
P
2
wðF2o ꢀ F2c Þ with the SHELXL-97 weighting scheme and stopped
at shift/err <0.001. The final residual electron density maps showed
no remarkable features. Neutral atom scattering factors for all
atoms and anomalous dispersion corrections for the non-hydrogen
atoms were taken from International Tables for Crystallography.
All calculations were performed with the WINGX system, including
[4] For example see M.T. Reetz, J.G. de Vries, Chem. Commun. (2004) 1559.
[5] (a) W.A. Herrmann, K. Öfele, S.K. Schneider, E. Herdtweck, S.D. Hoffmann,
Angew. Chem. 118 (2006) 3943; Angew. Chem., Int. Ed. 45 (2006) 3859;
(b) W.A. Herrmann, K. Öfele, S.K. Schneider, DE 102005062920, 2007.
[6] (a) K. Öfele, Angew. Chem. 80 (1968) 1032; Angew. Chem., Int. Ed. 7 (1968)
950;
the programs PLATON, SHELXL-97, and SIR92 [15].
Table 4
Crystallographic data for 4 ꢁ ACN
(b) K. Öfele, J. Organomet. Chem. 12 (1968) P42;
(c) K. Öfele, J. Organomet. Chem. 22 (1970) C9.
4 ꢁ ACN
C27H24Br2NPPd
[7] For examples of the cyclopropenylidene system see (a) H. Konishi, S.
Matsumoto, Y. Kamitori, H. Ogoshi, Z. Yoshida, Chem. Lett. (1978) 241;
(b) R. Weiss, C. Priesner, Angew. Chem. 90 (1978) 491; Angew. Chem., Int. Ed.
Engl. 17 (1978) 457;
Formula
Formula weight
659.66
Color/habit
Yellow/fragment
0.30 ꢃ 0.56 ꢃ 0.58
Triclinic
Crystal dimensions (mm3)
(c) R.D. Wilson, Y. Kamitori, H. Ogoshi, Z. Yoshida, J.A. Ibers, J. Organomet.
Chem. 173 (1979) 199;
(d) Z. Yoshida, Pure Appl. Chem. 54 (1982) 1059;
Crystal system
Space group
a (Å)
b (Å)
c (Å)
a (°)
b (°)
ꢀ
P1 (no. 2)
(e) S. Miki, T. Ohno, H. Iwasaki, Z. Yoshida, J. Phys. Org. Chem. 1 (1988) 333;
(f) H. Schumann, M. Glanz, F. Girgsdies, F.E. Hahn, M. Tamm, A. Grzegorzewski,
Angew. Chem. 109 (1997) 2328; Angew. Chem., Int. Ed. Engl. 36 (1997) 2232;
(g) A. de Meijere, S. Müller, T. Labahn, J. Organomet. Chem. 617 (2001) 318;
(h) J.T. DePinto, W.A. deProphetis, J.L. Menke, R.J. McMahon, J. Am. Chem. Soc.
129 (2007) 2308.
9.9435(6)
10.6413(6)
12.4012(7)
98.629(5)
94.270(5)
90.529(5)
1293.46(13)
2
153
1.694
3.883
648
2.74–25.35
11, 12, 14
23678
4703/0.030
3722
4703/0/290
0.0291/0.0678
0.0429/ 0.0769
1.154
c (°)
[8] For examples of the CHT-system see (a) P.E. Riley, R.E. Davis, N.T. Allison, W.M.
Jones, Inorg. Chem. 21 (1982) 1321;
V (Å3)
Z
(b) F.J. Manganiello, M.D. Radcliffe, W.M. Jones, J. Organomet. Chem. 228
(1982) 273;
(c) J.R. Lisko, W.M. Jones, Organometallics 5 (1986) 1890;
(d) Z. Lu, W.M. Jones, Organometallics 12 (1993) 1344.
[9] (a) V. Lavallo, Y. Canac, B. Donnadieu, W.W. Schoeller, G. Bertrand, Science 312
(2006) 722;
(b) V. Lavallo, Y. Ishida, B. Donnadieu, G. Bertrand, Angew. Chem. 118 (2006)
6804; Angew. Chem., Int. Ed. 45 (2006) 6652.
[10] D. Holschumacher, C.G. Hrib, P.G. Jones, M. Tamm, Chem. Commun. (2007)
3661.
[11] G. Kuchenbeiser, B. Donnadieu, G. Bertrand, J. Organomet. Chem. 693 (2008)
899.
[12] W.A. Herrmann, K. Öfele, C. Taubmann, E. Herdtweck, S.D. Hoffmann, J.
Organomet. Chem. 692 (2007) 3846.
[13] We note that simultaneously our cyclopropenylidene Pd catalysts were
screened in C–C coupling reactions by Wass et al., too. However,
unfortunately no product yields only conversions were reported in this
preliminary communication, cf.: D.F. Wass.; M.F. Haddow, T.W. Hey, A.G.
Orpen, C.A. Russell, R.L. Wingad, M. Green, Chem. Commun. (2007) 2704.
T (K)
Dcalcd (g cmꢀ3
)
l (mmꢀ1
F(000)
)
h Range (°)
Index ranges (h,k,l)
Number of reflections collected
Number of independent reflections/Rint
Number of observed reflections (I > 2r(I))
Number of data/restraints/parameters
R1/wR2 (I > 2r(I))a
R1/wR2 (all data)a
Goodness-of-fit (on F2)a
Largest diffraction peak and hole (e Åꢀ3
)
+0.86/ꢀ0.76
P
P
P
P
2
2
1=2
a
R1
¼
ðkFoj ꢀ jFckÞ= jFoj; wR2 ¼ f ½wðF2o ꢀ Fc2Þ ꢄ= ½wðFo2Þ ꢄg
;
P
2
1=2
GOF ¼ f ½wðF2o ꢀ F2c Þ ꢄ=ðn ꢀ pÞg
.