Alkyne Oxidations
J. Am. Chem. Soc., Vol. 122, No. 46, 2000 11381
complexes.15-19 Holm and co-workers1c,20 had reported the
oxygen atom transfer reactions of cis-dioxomolydenum(VI)
complexes to phosphines and related substrates; however, this
class of complexes cannot oxidize hydrocarbons such as alkenes
and alkynes. In this connection, it is conceivable that cis-
dioxometal complexes having a high E° value would be effective
for organic oxidations. Of particular interest is that cis-dioxo
complexes may react with substrates by transferring two oxygen
atoms analogous to the alkene cis-dihydroxylations mediated
by OsO4 and KMnO4 (Scheme 1). In 1988 Davison and co-
workers reported a [3 + 2] cycloaddition reaction between a
[(L)(Cl)TcVIIO3] complex (L ) 1,10-phenanthroline or 2,2′-
biyridine) with alkenes under ambient conditions. A technetium-
(V)-oxo complex, formulated as a [(L)(Cl)TcV(O)(O2C2H2R1R2)]
(R1 * R2 ) alkyl, aryl or H), was isolated and spectroscopically
characterized.16a Later Gable and co-workers also reported that
Figure 1.
Scheme 1
(5) Alkene epoxidation: (a) Ho, C.; Lau, T.-C.; Che, C.-M. J. Chem.
Soc., Dalton Trans. 1991, 1901. (b) Ho, C.; Leung, W.-H.; Che, C.-M. J.
Chem. Soc., Dalton Trans. 1991, 2933. (c) Che, C.-M.; Li, C.-K.; Tang,
W.-T.; Yu, W.-Y. J. Chem. Soc., Dalton Trans. 1992, 3153. (d) Cheng,
W.-C.; Yu, W.-Y.; Li, C.-K.; Che, C.-M. J. Org. Chem. 1995, 60, 6840.
(e) Fung, W.-H.; Yu, W.-Y.; Che, C.-M. J. Org. Chem. 1998, 63, 7715. (f)
Liu, C.-J.; Yu, W.-Y.; Che, C.-M.; Yeung, C.-H. J. Org. Chem. 1999, 64,
7365. Alkane hydroxylation: (g) Che, C.-M.; Yam, V. W.-W.; Mak, T.
C.-W. J. Am. Chem. Soc. 1990, 112, 2284. (h) Che, C.-M.; Ho, C.; Lau,
T.-C. J. Chem. Soc., Dalton Trans. 1991, 1259. (i) Che, C.-M.; Tang, W.-
T.; Wong, K.-Y.; Li, C.-K. J. Chem. Soc., Dalton Trans. 1991, 3277. (j)
Che, C.-M.; Tang, W.-T.; Lee, W.-O.; Wong, K.-Y.; Lau, T.-C. J. Chem.
Soc., Dalton Trans. 1992, 1551. (k) Zhang, R.; Yu, W.-Y.; Lai, T.-S.; Che,
C.-M. Chem. Commun. 1999, 1791.
(6) (a) Dobson, J. C.; Seok, W. K.; Meyer, T. J. Inorg. Chem. 1986, 25,
1325. (b) Roecker, L.; Meyer, T. J. J. Am. Chem. Soc. 1987, 109, 746. (c)
Stultz, L. K.; Binstead, R. A.; Reynolds, M. S.; Meyer, T. J. J. Am. Chem.
Soc. 1995, 117, 2520. (d) Lebeau, E. L.; Meyer, T. J. Inorg. Chem. 1999,
38, 2174.
(7) Griffith, W. P. Chem. Soc. ReV. 1992, 21, 179.
(8) Mayer, J. M. Acc. Chem. Res. 1998, 31, 441.
(9) Marimion, M. E.; Leising, R. A.; Takeuchi, K. J. J. Coord. Chem.
1988, 19, 1.
(10) For reviews, see: (a) Organic Synthesis by Oxidation with Metal
Compounds; Mijs, W. J.; De Jonge, C. R. H. I., Eds.; Plenum Press: New
York, 1986. (b) ComprehensiVe Organic Synthesis; Trost, B. M.; Fleming,
I. Eds.; Pergamon: Oxford, 1991; Vol. 7.
(11) Lee, D. G.; van den Engh, M. In Oxidation in Organic Chemistry;
Trahanovsky, W. S., Ed.; Academic Press: New York, 1973; Part B, Chapter
4.
(12) (a) Schro¨der, M. Chem. ReV. 1980, 80, 187. (b) Kolb, H. C.;
VanNieuwenhze, M. S.; Sharpless, K. B. Chem. ReV. 1994, 94, 2483.
(13) (a) Stewart, R. In Oxidation in Organic Chemistry; Wiberg, K. B.,
Ed.; Academic Press: New York, 1971; Part A, Chapter 1. (b) Gardner, K.
A.; Mayer, J. M. Science 1995, 269, 1849.
(14) (a) Ley, S. V.; Madin, A. In ComprehensiVe Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 7, p 251.
(b) Muzart, J. Chem. ReV. 1992, 92, 113 and references therein. (c) Cook,
G. K.; Mayer, J. M. J. Am. Chem. Soc. 1994, 116, 1855. (d) Cook, G. K.;
Mayer, J. M. J. Am. Chem. Soc. 1995, 117, 7139.
(15) (a) Behling, T.; Caparcilli, M. V.; Skapski, A. C.; Wilkinson, G.
Polyhedron 1982, 1, 840. (b) Che, C.-M.; Leung, W.-H. J. Chem. Soc.,
Chem. Commun. 1987, 1376. (c) Perrier, S.; Kochi, J. K. Inorg. Chem.
1988, 27, 4165. (d) Griffiths, W. P.; Jolliffe, J. M.; Ley, S. V.; William, D.
J. J. Chem. Soc., Chem. Commun. 1990, 1219. (e) Blackbourn, R. L.; Jones,
L. M.; Ram, M. S.; Sabat, M.; Hupp, J. T. Inorg. Chem. 1990, 29, 179. (f)
Brown, S. N.; Mayer, J. M. J. Am. Chem. Chem. 1996, 118, 12 119. (g)
DuMez, D. D.; Mayer, J. M. Inorg. Chem. 1998, 37, 445.
(16) (a) Pearlstein, R. M.; Davison, A. Polyhedron 1988, 7, 1981. (b)
Gable, K. P.; Phan, T. N. J. Am. Chem. Soc. 1994, 116, 833. (c) For a
review of Re(VII) oxo compounds, see: Roma˜o, C. C.; Ku¨hn, F. E.
Herrman, W. A. Chem. ReV. 1997, 97, 3197.
(17) (a) Bailey, C. L.; Drago, R. S. J. Chem. Soc., Chem. Commun. 1987,
179. (b) Goldstein, A. S.; Beer, R. H.; Drago, R. S. J. Chem. Soc., Chem.
Commun. 1991, 21.
Cp*ReO3 can transfer two oxygen atoms to a CdC bond of
alkenes in a cis manner.16b
The oxidation chemistry of several classes of RudO com-
pounds has been extensively investigated in the past decades.5,6,21
Important features of these compounds are that they possess
very high E° values yet can be readily isolated and structurally
characterized. Several years ago, we successfully isolated and
obtained the X-ray crystal structures of two cis-dioxoruthenium-
(VI) complexes, [Cn*(CF3CO2)RuVIO2]ClO4 (1) (Cn* ) 1,4,7-
trimethyl-1,4,7-triazacyclononane)19b and cis-[(Tet-Me6)RuVIO2]-
(ClO4)2 (2) (Tet-Me6 ) N,N,N′,N′-tetramethyl-3,6-dimethyl-3,6-
diazaoctane-1,8-diamine)19a (Figure 1). These complexes are
competent oxidants for organic oxidations, and their reactions
with the alkenes under stoichiometric conditions have been
reported.5d,22 Here, we demonstrate that the cis-dioxoruthenium-
(VI) complexes 1 and 2 react with alkynes by transferring two
oxygen atoms to a CtC bond, which we formally describe as
a [3 + 2] cycloaddition.23 Although it is generally accepted that
the oxidation of alkynes to 1,2-diketones by M)O reagents
involves the [3 + 2] cycloaddition reaction as the principal step,
cycloadduct intermediates haVe neVer been hitherto isolated or
characterized.10 To our knowledge, the present report features
the first evidence for [3 + 2] cycloaddition in the alkyne
oxidation by M)O reagents. In this work, we have also
examined the mechanism of the cycloaddition by kinetic studies
and product analysis.
Results
Synthesis of cis-[(Cn*)(CF3CO2)RuVIO2]ClO4. Monooxo-
and trans-dioxoruthenium complexes are usually prepared by
sequential oxidation/deprotonation reactions of the aqua-
(21) For reviews, see: (a) Che, C.-M.; Yam, V. W.-W. AdV. Inorg. Chem.
1992, 39, 233. (b) Che, C.-M.; Yam, V. W.-W. AdV. Transition Metal Coord.
Chem. 1996, 1, 209. (c) Che, C.-M.; Yu, W.-Y. Pure Appl. Chem. 1999,
71, 281.
(22) (a) Cheng, W.-C.; Fung, W.-H.; Che, C.-M. J. Mol. Cata. (A) 1996,
113, 311. (b) Fung, W.-H.; Yu, W.-Y.; Che, C.-M. J. Org. Chem. 1998,
63, 2873.
(23) A [3 + 2] cycloaddition mechanism has been proposed for the OsO4-
mediated alkene dihydroxylation, see ref 12a and: (a) Corey, E. J.; Noe,
M. C.; Sarshar, S. J. Am. Chem. Soc. 1993, 115, 3828. (b) Corey, E. J.;
Noe, M. C. J. Am. Chem. Soc. 1993, 115, 12579. (c) Corey, E. J.; Noe, M.
C.; Sarshar, S. Tetrahedron Lett. 1994, 35, 2861.
(18) (a) Dobson, J. C.; Meyer, T. J. Inorg. Chem. 1988, 27, 3283. (b)
Llobet. A.; Hogson, D. J.; Meyer. T. J. Inorg. Chem. 1990, 29, 3760.
(19) (a) Li, C.-K.; Che, C.-M.; Tong, W.-F.; Lai, T.-F. J. Chem. Soc.,
Dalton Trans. 1988, 1406. (b) Cheng, W.-C.; Yu, W.-Y.; Cheung, K.-K.;
Che, C.-M. J. Chem. Soc., Chem. Commun. 1994, 1063.
(20) Harlan, E. W.; Berg, J. M.; Holm, R. H. J. Am. Chem. Soc. 1986,
108, 6992.