longer than corresponding distances in structurally related
0
Conclusions
0
00
[
{ZnCl L} ] 1-dimensional polymers (L ¼ 4,2 :6 ,4 -terpyridine
2
n
0
0
00
0
30,39
4,2 :6 ,4 -Terpyridines typically function as bidentate bridging
ligands utilizing only the 4-pyridyl nitrogen donors. Rigid self-
or 4 -substituted derivatives thereof).
ꢀ
The 3-chloropyridyl
substituent is twisted 42.3 out of the plane of the pyridine ring to
which it is attached, and adjacent pairs of pyridine rings in the
ꢀ
assembly algorithms predict a 120 angle between the N–M
ꢀ
vectors in coordination compounds. Crystallization experiments
leading to a few single crystals or bulk material cannot be used in
the absence of a profound understanding of the stoichiometric
and structural space and solution speciation to make far-reach-
ing conclusions about subtle influences on solid state structures.
Different crystallization conditions can lead to profoundly
different structures. In the case of ligand 2, it is not possible to
rationalize differing structural features in terms of, for example,
halogen steric requirements.
tpy domain are mutually twisted by 14.6 and 30.8 . The
1
-dimensional polymer chains pass obliquely through the unit
cell. Since the chain is generated by a glide plane, we refrain from
using the descriptor ‘helical’ which implies that the chain is built
up by a screw axis. In Fig. 6b, pairs of chains coloured red and
green are related by 2-fold screw axes, and pairs of chains of the
same colour are related by inversion. Face-to-face p-stacking of
centrosymmetric pairs of 3-chloropyridyl substituents on adja-
cent chains is efficient (highlighted in space-filling representation
ꢁ
in Fig. 6b), the separation of the planes of the rings being 3.65 A.
Additional packing interactions involve CH/Nchloropy hydrogen
bonds and CH/I contacts. The latter lie in the range 3.11–
3
Acknowledgements
ꢁ ꢁ
.14 A, significantly less than 3.35 A which represents the sum of
We thank the Swiss National Science Foundation, the European
Research Council (Advanced Grant 267816 LiLo), and the
University of Basel for financial support. GZ thanks the Novartis
Foundation, formerly Ciba-Geigy Jubilee Foundation for
support. Discussions with Dr Markus Neuburger are gratefully
acknowledged.
the van der Waals radii.
Ligand 3 again shows a preference for forming a 1-dimen-
sional polymer when treated with ZnI
2
under the same condi-
tions as its reaction with ZnCl . Crystals of [{ZnCl (3)} ] grew
2
2
n
within one month when carefully layered solutions of 3 in
,2-C H Cl /MeOH and ZnCl in MeOH with a dividing layer of
1
6
4
2
2
neat MeOH were left to stand at room temperature. In contrast
to [{ZnI (3)} ]$0.25H O, [{ZnCl (3)} ] crystallizes in the ortho-
rhombic space group Pbca. There is one independent {ZnCl (3)}
unit and the Zn/Zn separations along each chain are
Notes and references
2
n
2
2
n
1 P. J. Stang and B. Olenyuk, Acc. Chem. Res., 1997, 30, 502.
2
2
3
4
S. Leininger, B. Olenyuk and P. J. Stang, Chem. Rev., 2000, 100, 853.
S. R. Seidel and P. J. Stang, Acc. Chem. Res., 2002, 35, 972.
B. H. Northrop, H.-B. Yang and P. J. Stang, Chem. Commun., 2008, 5896.
ꢁ
1
3.207(2) A, i.e. similar to that in the iodido analogue. Each
chain follows the c-axis and is generated by the glide plane along
c. Packing of chains is illustrated in Fig. 7. Pairs of chains col-
oured green (or red) are related by inversion, and pairs of chains
5 M. Yoshizawa, J. K. Klosterman and M. Fujita, Angew. Chem., Int.
Ed., 2009, 48, 3418.
6
7
8
G. F. Swiegers and T. J. Malefetse, Chem. Rev., 2000, 100, 3483.
B. Moulton and M. J. Zaworotko, Chem. Rev., 2001, 101, 1629.
M. Fujita, K. Umemoto, M. Yoshizawa, N. Fujita, T. Kusukawa and
K. Biradha, Chem. Commun., 2001, 509.
coloured green and red are related by a glide along b or a. The
ꢀ
3
-chloropyridyl ring is rotated 38.0 out of the plane of the
ꢀ
9 D. W. Johnson and K. N. Raymond, Supramol. Chem., 2001, 13, 639.
0 B. J. HollidayandC. A. Mirkin, Angew. Chem., Int. Ed., 2001, 40, 2022.
1 G. F. Swiegers and T. J. Malefetse, Coord. Chem. Rev., 2002, 225, 91.
pyridine ring to which it is bonded (compare 42.3 for
1
1
[
{ZnI (3)} ]); the angles between bonded pairs of pyridine rings
2 n
ꢀ
ꢀ
in the tpy unit are 25.1 and 33.4 (compare 14.6 and 30.8 in
{ZnI (3)} ]). Crystal packing is dominated by CH/Nchloropy
hydrogen bonds and weak C–H/Cl contacts (shortest CH/Cl
12 L. F. Lindoy, Coord. Chem. Rev., 2008, 252, 811.
13 E. C. Constable, Coord. Chem. Rev., 2008, 252, 842.
14 E. C. Constable, Chem. Ind., 1994, 56.
[
2
n
33
1
5 See, for example: S. R. Batten, B. F. Hoskins and R. Robson, Angew.
Chem., Int. Ed., 1995, 34, 820; S. R. Batten, B. F. Hoskins and
R. Robson, J. Am. Chem. Soc., 1995, 117, 5385; B. F. Abrahams,
S. R. Batten, H. Hamit, B. F. Hoskins and R. Robson, Chem.
Commun., 1996, 1313; B. F. Abrahams, S. R. Batten, H. Hamit,
B. F. Hoskins and R. Robson, Angew. Chem., Int. Ed., 1996, 35,
ꢁ
¼
2.66–2.83 A compared to the sum of the van der Waals radii of
ꢁ
.00 A) and no efficient p-stacking interactions between
aromatic rings are present.
3
1
3
690; K. Biradha and M. Fujita, Angew. Chem., Int. Ed., 2002, 41,
392; O. Ohmori, M. Kawano and M. Fujita, Angew. Chem., Int.
Ed., 2005, 44, 1962; Y. Inokuma, T. Arai and M. Fujita, Nat.
Chem., 2010, 2, 780; Y. Inokuma, M. Kawano and M. Fujita, Nat.
Chem., 2011, 3, 349.
1
1
1
1
2
6 E. C. Constable, G. Zhang, C. E. Housecroft, M. Neuburger and
J. A. Zampese, CrystEngComm, 2009, 11, 2279.
7 E. C. Constable, G. Zhang, E. Coronado, C. E. Housecroft and
M. Neuburger, CrystEngComm, 2010, 12, 2139.
8 E. C. Constable, G. Zhang, C. E. Housecroft, M. Neuburger and
J. A. Zampese, CrystEngComm, 2010, 12, 2146.
9 E. C. Constable, G. Zhang, C. E. Housecroft, M. Neuburger and
J. A. Zampese, CrystEngComm, 2010, 12, 3733.
0 M. Barqu ꢂı n, J. Cancela, M. J. Gonz ꢂa lez Garmendia, J. Quintanilla
and U. Amador, Polyhedron, 1998, 17, 2373.
21 G. W. V. Cave and C. L. Raston, J. Supramol. Chem., 2002, 2, 317.
22 L. Hou and D. Li, Inorg. Chem. Commun., 2005, 8, 190.
23 B.-C. Wang, Q.-R. Wu, H.-M. Hu, X.-L. Chen, Z.-H. Yang,
Y.-Q. Shangguan, M.-L. Yang and G.-L. Xue, CrystEngComm,
2010, 12, 485.
Fig. 7 Packing of chains of [{ZnCl
2 n
(3)} ].
This journal is ª The Royal Society of Chemistry 2011
CrystEngComm, 2011, 13, 6864–6870 | 6869