300
R.S. Joshi et al. / Ultrasonics Sonochemistry 17 (2010) 298–300
Table 3
Characterization dataa of bis(indol-3-yl)methanes (3a–3n).
Entry
Aldehyde
Time (min)
Yieldb,c (%)
MP (°C)
Found
Lit.
3a
3b
3c
3d
3e
3f
3g
3h
3i
3j
3k
3l
3m
3n
Benzaldehyde
45
55
60
40
60
60
40
65
60
65
50
45
60
60
94
88
92
92
82
85
90
84
88
90
83
80
87
90
123–124
73–75
74–75
124 [34]
74 [34]
74 [35]
78 [32]
111 [35]
124 [32]
220[32]
96[35]
189 [32]
102 [36]
322[32]
68 [34]
97 [32]
152 [35]
2-Chlorobenzaldehyde
3-Chlorobenzaldehyde
4-Chlorobenzaldehyde
4-Hydroxy-3-methoxy benzaldehyde
4-Hydroxybenzaldehyde
4-Nitrobenzaldehyde
4-Methylbenzaldehyde
4-Methoxybenzaldehyde
Benzo[1,3]dioxale-5-benzaldehyde
Furan-2-carbaldehyde
Heptanal
76–77
109–111
122–123
221–222
97–98
188–189
100–102
320–321
68–70
Piconaldehyde
Thiophene-2-carbaldehyde
99–100
150–153
a
b
c
Reaction of aldehyde with 1H-Indole in presence of 1-hexenesulphonic acid sodium salt (10 mol%) in water under ultrasound irradiation.
Isolated yield.
Compounds were characterised by 1H NMR, MS spectral data and were compared with the reference compounds [37].
[15] S.Y. Wang, S.J. Ji, X.M. Su, Chinese J. Chem. 26 (1) (2008) 22.
[16] S. Sobhani, E. Safaei, A. Hasaninejad, S. Rezazadeh, J. Org. Meta. Chem. 694 (18)
(2009) 302.
5. Conclusion
1-Hexenesulphonic acid sodium salt in aqueous media was
found to be mild and effective catalyst in green synthesis of bis(in-
dol-3-yl)methanes under ultrasonic irradiation. This catalyst pro-
vides clean, conversion; greater selectivity and easy work-up
make this protocol practical and economically attractive.
[17] N. Aziz, L. Torkian, M.R. Saidi, J. Mol. Catal. A: Chem. 275 (2007) 109.
[18] T.J. Mason, J.P. Lorimer, In Sonochemistry: Theory, Application and Uses of
Ultrasound in Chemistry, John Wiley and Sons, New York, 1988.
[19] K.S. Suslick, In Ultrasound its Chemical, Physical and Biological Effects, VCH,
Weinheim, 1988.
[20] A. Gaplovsky, M. Gaplovsky, S. Toma, J. Luche, J. Org. Chem. 65 (2000)
8444.
[21] R.R. Deshmukh, R. Rajagopal, K.V. Srinivasan, Chem. Commun. (2001)
1544.
Acknowledgements
[22] X. Zeng, S. Ji, S. Wang, Tetrahedron 61 (2005) 10235.
[23] J. Li, H. Dai, W. Xu, T. Li, Ultrason. Sonochem. 13 (2006) 24.
[24] M. Iraj, R.M. Hamid, R.K. Ahmed, N. Kobra, Lett. Org. Chem.
768.
[25] J. Weiss, VCH Verlags Gesellschaft mbH, second ed., VCH Publisher, Inc., New
York, Weinheim, Germany, 1995, p. 239.
[26] H. Small, Ion Chromatography, Plenum Press, New York and London, 1989. p.
106.
The authors are thankful to University Grants Commission, New
Delhi, for awarding the fellowship and to The Head, Department of
Chemistry, Dr. Babasaheb Ambedkar Marathwada University,
Aurangabad, for valuable support and laboratory facility.
3 (2006)
References
[27] J.L. Boyer, B. Gilot, J.P. Canselierm, Phosphorus, Sulphur, Silicon Relat. Elem. 20
(1984) 259.
[28] G.R. Jadhav, M.U. Shaikh, R.P. Kale, C.H. Gill, Chinese Chem. Lett. 20 (2009) 292.
[29] S.S. Sonar, A. Kategaokar, M. Ware, B. Shingate, C.H. Gill, M.S. Shingare, Arkivoc
(ii) (2009) 138.
[30] R.P. Kale, G.R. Jadhav, M.U. Shaikh, C.H. Gill, Tetrahedron Lett. 50 (2009) 1780.
[31] G.R. Jadhav, M.U. Shaikh, R.P. Kale, C.H. Gill, Chinese Chem. Lett. 20 (2009) 535.
[32] S.A. Sadaphal, S.S. Sonar, M.N. Ware, M.S. Shingare, Green Chem. Lett. Rev. 1
(2008) 191.
[33] D. Cao, H. Kolshorn, H. Meier, Tetrahedron Lett. 37 (1996) 4487.
[34] R.R. Nagawade, D.B. Shide, Bull. Korean Chem. Soc. 26 (2005) 12.
[35] S.A. Sadaphal, K.F. Shelke, S.S. Sonar, M.S. Shingare, Cent. Eur. J. Chem. 6 (2008)
622.
[1] R.J. Sundberg, The Chemistry of Indoles, Academic, New York, 1996.
[2] B.P. Bandgar, K.A. Shaikh, Tetrahedron Lett. 44 (2003) 1959.
[3] N. Sirisoma, A. Pervin, J. Drewe, B. Tseng, S.X. Cai, Bioorg. Med. Chem. Lett. 9
(2009) 2710.
[4] G.W. Gribble, In Comprehensive Heterocyclic Chemistry, vol. 2, second ed.,
Pergamom Press, New York, 1996, p. 211.
[5] X. Ge, S. Yannai, G. Rennert, N. Gruener, F.A. Fares, Biochem. Biophys. Res.
Commun. 228 (1996) 153.
[6] P. Ehrlich, Med. Woche (1901) 151.
[7] L. Morgan, R. Schunior, J. Org. Chem. 27 (1962) 3696.
[8] D. Dolphin, J. Heterocycl. Chem. 7 (1979) 275.
[36] B.P. Bandgar, K.A. Shaikh, J. Chem. Res. Synop. (2004) 34.
[37] Spectral data of reprehensive compounds (3d) 1H NMR (400 MHz, CDCl3): 5.86
(s, 1H, Ar–CH), 6.65 (s, 2H), 7.02 (t, 2H, J = 7.6 Hz), 7.18 (t, 2H, J = 7.6 Hz), 7.26–
7.38 (m, 8H), 7.93 (br s, 2H, NH); MS m/z. 357 (M+) 359 (M+2). (3j) 1H NMR
(400 MHz, CDCl3): 5.80 (s, 1 H), 5.90 (s, 2 H), 6.66 (d, 2 H, J = 1.2 Hz), 6.72 (d, 1
H, J = 8.6 Hz), 6.83 (d, 2 H, J = 7.8 Hz), 7.01 (t, 2H, J = 7.8 Hz), 7.16 (t, 2 H,
J = 7.2 Hz), 7.35 (d, 2 H, J = 8.4 Hz), 7.4 (d, 2 H, J = 8.1 Hz), 7.89 (br, s, 2 H, NH).
ES-MS m/z = 356 (M+).
[9] W. Remers, Chem. Heterocycl. Compd. 25 (1972) 1.
[10] G. Bram, A. Loupy, in: P. Laszlo (Ed.), In Preparative Chemistry Using Supported
Reagents, Academic Press, San Diego, 1987, p. 387.
[11] S. Narayan, J. Muldoon, M.G. Finn, V.V. Fokin, H.C. Kolb, K.B. Sharpless, Angew.
Chem. Int. Ed. 44 (2005) 3275.
[12] U.M. Lindstrom, Chem. Rev. 102 (2002) 2751.
[13] C. Wei, C.J. Li, J. Am. Chem. Soc. 125 (2003) 9584.
[14] N.D. Kokare, J.N. Sangshetti, D.B. Shinde, Chinese Chem. Lett. 19 (2008) 1186.