2588
Y.-S. Feng et al. / Tetrahedron Letters 50 (2009) 2585–2588
2006, 62, 4756–4761; (f) Altman, R. A.; Buchwald, S. L. Org. Lett 2006, 8, 2779–
References and notes
2782; (g) Correa, A.; Bolm, C. Adv. Synth. Catal. 2007, 349, 2673–2676; (h) Ma, H.
C.; Jiang, X. Z. J. Org. Chem 2007, 72, 8943–8946; (i) Zhang, S. L.; Liu, L.; Fu, Y.;
Guo, Q. X. Organometallics 2007, 26, 4546–4554; (j) Mao, J.; Guo, J.; Song, H.; Ji, S.
J. Tetrahedron 2008, 64, 1383–1387; (k) Huang, Y. Z.; Gao, J.; Ma, H.; Miao, H.; Xu,
J. Tetrahedron Lett. 2008, 49, 948–951.
1. (a) Hosseinzadeh, R.; Sarrafi, Y.; Mohadjerani, M.; Mohammadpourmir, F.
Tetrahedron Lett. 2008, 49, 840–843; (b) Rout, L.; Jammi, S.; Punniyamurthy, T.
Org. Lett. 2007, 9, 3397–3399; (c) Zou, B.; Yuan, Q.; Ma, D. Org. Lett. 2007, 9,
4291–4294; (d) Deng, W.; Wang, Y. F.; Zou, Y.; Liu, L.; Guo, Q. X. Tetrahedron Lett.
2004, 45, 2311–2315; (e) Deng, W.; Liu, L.; Zhang, C.; Liu, M.; Guo, Q. X.
Tetrahedron Lett. 2005, 46, 7295–7298; (f) Wang, Z.; Bao, W.; Jiang, Y. Chem.
Commun. 2005, 2849–2851; (g) Yang, M.; Liu, F. J. Org. Chem. 2007, 72, 8969–
8971; (h) Kantam, M. L.; Yadav, J.; Laha, S.; Sreedhar, B.; Jha, S. Adv. Synth. Catal.
2007, 349, 1938–1942; (i) Zhu, L.; Guo, P.; Li, G.; Lan, J.; Xie, R.; You, J. J. Org.
Chem. 2007, 72, 8535–8538; (j) Ma, H. C.; Jiang, X. Z. J. Org. Chem. 2007, 72,
8943–8946; (k) Zhao, Y.; Wang, Y.; Sun, H.; Li, L.; Zhang, H. Chem. Commun.
2007, 3186–3188; (l) Zou, B.; Yuan, Q.; Ma, D. Angew. Chem., Int. Ed. 2007, 46,
2598–2601; (m) Tao, C. Z.; Li, J.; Fu, Y.; Liu, L.; Guo, Q. X. Tetrahedron Lett. 2008,
49, 70–75; (n) Tanimori, S.; Ura, H.; Kirihata, M. Eur. J. Org. Chem. 2007, 3977–
3980; (o) Wong, K. T.; Ku, S. Y.; Yen, F. W. Tetrahedron Lett. 2007, 48, 5051–5054;
(p) Altman, R. A.; Anderson, K. W.; Buchwald, S. L. J. Org. Chem. 2008, 73, 5167–
5169.
4. (a) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428–2439; (b) Deng, W.; Liu, L.;
Guo, Q. X. Chin. J. Org. Chem. 2004, 24, 150–165; (c) Evano, G.; Blanchard, N.;
Toumi, M. Chem. Rev. 2008, 108, 3054–3131.
5. Liu, L.; Frohn, M.; Xi, N.; Dominguez, C.; Hungate, R.; Reider, P. J. J. Org. Chem.
2005, 70, 10135–10138.
6. General experimental procedure. All reagents and solvents, except the soluble
base-(CH3)4N+OHꢀ, were pure analytical grade materials purchased from
commercial sources and were used without further purification. The soluble
base, (CH3)4N+OHꢀ, was dissolved in pure water and frozen at ꢀ10 °C for 24 h till
they were turned into solid. Then, the base was put into lyophilizer and was
dried for 8 h. The 1H and 13C NMR spectra were recorded in CDCl3 on a 300 MHz
instrument with TMS as internal standard. TLC was carried out with 0.2 mm
thick silica gel plates (GF254). The columns were hand packed with Silica Gel 60
(200–300). All reactions were carried out in a Schlenk tube equipped with a
magnetic stir bar under Ar atmosphere. A Schlenk tube was charged with Cu salt
(0.1 mmol), base (2 mmol), ligand (0.1 mmol), and solvent (1 ml) under Ar. The
reaction vessel was closed and placed under stirring in a preheated oil bath at
80 °C. The reaction mixture was stirred for 24 h. The resulting suspension was
cooled to room temperature and filtered through a pad of filter paper with the
help of 10 ml of ethyl acetate. The filtrate was concentrated and the residue was
purified by silica gel chromatography.N-benzyl-4-methoxyaniline (entry 2,
Table 2). 1H NMR (300 MHz, CDCl3, d ppm): 7.36–7.25 (5H, m), 6.79 (2H, d,
J = 8.4 Hz), 6.65 (2H, d, J = 8.4 Hz), 4.28 (2H, s), 3.74 (3H, s); 13C NMR (300 MHz,
CDCl3): 152.4, 142.5, 139.8, 128.7, 127.6, 127.3, 115.1, 114.3, 55.9, 49.4 ppm.
HRMS m/z: 213.1154 (213.1160 calcd for C14H15NO).1-p-Tolyl-1H-pyrrole (entry
16, Table 2). 1H NMR (300 MHz, CDCl3, d ppm): 7.29–7.19 (4H, m), 7.05 (2H, d,
J = 1.5 Hz), 6.33 (2H, d, J = 1.5 Hz), 2.36 (3H, s); 13C NMR (300 MHz, CDCl3):
138.6, 135.3, 130.1, 120.5, 119.4, 110.1, 20.8 ppm. HRMS m/z: 157.0891
(157.0903 calcd for C11H11N).
2. (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J. F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31,
805–818; (b) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046–2067; (c)
Schlummer, B.; Scholz, U. Adv. Synth. Catal. 2004, 346, 1599–1626; (d) Tewari, A.;
Hein, M.; Zapf, A.; Beller, M. Tetrahedron 2005, 61, 9705–9709; (e) Charles, M. D.;
Schultz, P.; Buchwald, S. L. Org. Lett. 2005, 7, 3965–3968; (f) Nicolaou, K. C.;
Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442–4489; (g) Shen, Q.;
Shekhar, S.; Stambuli, J. P.; Hartwig, J. F. Angew. Chem., Int. Ed. 2005, 44, 1371–
1375; (h) Fang, Y. Q.; Lautens, M. Org. Lett. 2005, 7, 3549–3552; (i) Altman, R. A.;
Koval, E. D.; Buchwald, S. L. J. Org. Chem. 2007, 72, 6190–6199; (j) Altman, R. A.;
Hyde, A. M.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 9613–9620;
(k) Shen, Q.; Ogata, T.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 6586–6596; (l)
Bertrand, M. B.; Neukom, J. D.; Wolfe, J. P. J. Org. Chem. 2008, 73, 8851–8860.
3. (a) Lindley, J. Tetrahedron 1984, 40, 1433–1456; (b) Hassan, J.; Sevignon, M.;
Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359–1470; (c) Ley, S. V.;
Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400–5449; (d) Yang, T.; Lin, C.;
Fu, H. Org. Lett 2005, 7, 4781–4784; (e) Lv, X.; Wang, Z.; Bao, W. Tetrahedron