10.1002/anie.201906011
Angewandte Chemie International Edition
RESEARCH ARTICLE
[9]
For a review on enantioconvergent reactions of racemic-organic halides,
see: (a) G. C. Fu, ACS Cent. Sci. 2017, 3, 692–700. (b) For examples of
enantioconvergent reactions with nickel(II) catalysts, see: (b) A. H.
Cherney, N. T. Kadunce, S. E. Reisman, J. Am. Chem. Soc. 2013, 135,
7442–7445. (c) J. Schmidt, J. Choi, A. T. Liu, M. Slusarczyk, G. C. Fu,
Science 2016, 354, 1265–1269. For an example of an enantioconvergent
reaction with an iron(II) catalyst, see: (d) M. Jin, L. Adak, M. Nakamura,
J. Am. Chem. Soc. 2015, 137, 7128–7134. For examples of
enantioconvergent reactions with copper(II) catalysts, see: (e) J. B.
Langlois, A. Alexakis, Chem. Commun. 2009, 3868–3870. (f) Q. M. Kainz,
C. D. Matier, A. Bartoszewicz, S. L. Zultanski, J. C. Peters, G. C. Fu,
Science 2016, 351, 681–684.
[24] The B–C distances (2.89–2.93 Å) and Cu(II)–C distances (3.22–3.30 Å)
in the transition states TS1 and TS2 are significantly longer than those
for the borylcupration of alkenes [B–C: 1.85–2.01 Å, Cu(I)–C: 1.99–2.08
Å] in the copper(I)-catalyzed hydroboration of terminal alkenes, which is
not a radical reaction; see: ref. 16.
[25] A clear correlation between the corresponding enantioselectivity and the
electrophilicity of the benzylic radical intermediate was found. The
detailed discussion is provided in the Supporting Information (Figure S6,
S7, Table S2 and S3).
[10] During the course of our study, Fu and co-workers reported pioneering
work on a nickel(II)-catalyzed reaction with moderate enantioselectivity
(<88% ee); see: Z. Wang, S. Bachman, A. S. Dudnik, G. C. Fu, Angew.
Chem. Int. Ed. 2018, 57, 14529–14532; Angew. Chem. 2018, 130,
14737–14740.
[11] H. Ito, S. Kunii, M. Sawamura, Nat. Chem. 2010, 2, 972–976.
[12] B. S. L. Collins, C. M. Wilson, E. L. Myers, V. K. Aggarwal, Angew. Chem.
Int. Ed. 2017, 56, 11700–11733; Angew. Chem. 2017, 129, 11860–
11894.
[13] For a review on copper(I)-catalyzed asymmetric borylations with a
diboron reagent, see: (a) D. Hemming, R. Fritzemeier, S. A. Westcott, W.
L. Santos, P. G. Steel, Chem. Soc. Rev. 2018, 47, 7477–7494. For
selected examples of copper(I)-catalyzed asymmetric borylation
reactions, see: (b) S. Mun, J. E. Lee, J. Yun, Org. Lett. 2006, 8, 4887–
4889. (c) H. Ito, S. Ito, Y. Sasaki, K. Matsuura, M. Sawamura, J. Am.
Chem. Soc. 2007, 129, 14856–14857. (d) J. E. Lee, J. Yun, Angew.
Chem. Int. Ed. 2008, 47, 145–147; Angew. Chem. 2008, 120, 151–153.
(e) H. Ito, Y. Kosaka, K. Nonoyama, Y. Sasaki, M. Sawamura, Angew.
Chem. Int. Ed. 2008, 47, 7424–7427; Angew. Chem. 2008, 120, 7534–
7534. (f) Y. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2009, 131, 3160–
3161. (g) I. Chen, L. Yin, W. Itano, M. Kanai, M. Shibasaki, J. Am. Chem.
Soc. 2009, 131, 11664–11665.
[14] (a) A. K. Sharma, W. M. C. Sameera, M. Jin, L. Adak, C. Okuzono, T.
Iwamoto, M. Kato, M. Nakamura, K. Morokuma, J. Am. Chem. Soc. 2017,
139, 16117–16125. (b) W. Lee, J. Zhou, O. Gutierrez, J. Am. Chem. Soc.
2017, 139, 16126–16133. (c) B. Chen, C. Fang, P. Liu, J. M. Ready,
Angew. Chem. Int. Ed. 2017, 56, 8780–8784; Angew. Chem. 2017, 129,
8906–8910. (d) F. Wang, P. Chen, G. Liu, Acc. Chem. Res. 2018, 51,
2036–2046.
[15] (a) T. Imamoto, Chem. Rec. 2016, 16, 2655–2669. (b) T. Imamoto, K.
Sugita, K. Yoshida, J. Am. Chem. Soc. 2005, 127, 11934–11935. (c) Z.
Zhang, K. Tamura, D. Mayama, M. Sugiya, T. Imamoto, J. Org. Chem.
2012, 77, 4184–4188.
[16] H. Iwamoto, T. Imamoto, H. Ito, Nat. Commun. 2018, 9, 2290.
[17] It should be noted that this stands in stark contrast to the results of our
previous work, where the bulkiest ligand was the most suitable in a
copper-catalyzed hydroboration; see: ref. 16.
[18] J. Llaveria, D. Leonori, V. K. Aggarwal, J. Am. Chem. Soc. 2015, 137,
10958–10961.
[19] We could not unequivocally determine whether neutral borylcopper(I)
complex B or an unknown copper species was the cause of the reduced
enantioselectivity.
[20] A detailed discussion of the computational data on the enantioselective
borylation of the radical intermediate is provided in the Supporting
Information (Figures S1–S5).
[21] (a) E. R. Johnson, S. Keinan, P. Mori Sánchez, J. Contreras García, A.
J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498–6506. (b) J.
Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J. P. Piquemal,
D. N. Beratan, W. Yang, J. Chem. Theory Comput. 2011, 7, 625–632.
[22] M. C. Schwarzer, A. Fujioka, T. Ishii, H. Ohmiya, S. Mori, M. Sawamura,
Chem. Sci. 2018, 9, 3484–3493.
[23] (a) J. P. Wagner, P. R. Schreiner, Angew. Chem. Int. Ed. 2015, 54,
12274–12296; Angew. Chem. 2015, 127, 12446–12471. (b) D. J. Liptrot,
P. P. Power, Nat. Rev. Chem. 2017, 1, 0004.
This article is protected by copyright. All rights reserved.