F. A. Khan, S. K. Upadhyay / Tetrahedron Letters 49 (2008) 6111–6114
6113
After obtaining the optically pure amines in good yields, we em-
ployed them for the asymmetric Baylis–Hillman reaction. Using
20 mol % of the optically pure amine (À)-1 or (+)-1 along with p-
nitrobenzaldehyde and methyl acrylate in MeOH under sonication
conditions17 afforded the Baylis–Hillman adduct. While the time
required (22 h) for the formation of the adduct and the yields ob-
tained are comparable to the best conditions reported,18 the asym-
metric induction was very low (8%).
MeO
Br
MeO
Br
OMe
Br
OMe
X
Br
n-Bu3Sn
X = Br, H
Br
Br
N
N
3
In summary, we have reported a practical and expedient syn-
thesis of racemic as well as optically pure antipodes of tetracyclic
C7n
amines involving a stereoselective C7n 5x free radical cascade pro-
C
MeO
Br
MeO
Br
OMe
X
tocol. Bis-allyl amide when subjected to radical cascade conditions
resulted in C7n mono cyclized product. The optically pure and
highly nucleophilic amines were synthesized and screened for
the asymmetric Baylis–Hillman reactions.
OMe
X
Br
n-Bu3SnH
H
Br
H
C5x
H
Acknowledgements
N
N
X = H, 2a
X = Br, 2b
We thank the Department of Science and Technology (DST),
New Delhi, for financial assistance. F.A.K. acknowledges the DST
for a Swarnajayanti Fellowship. F.A.K. would also like to thank Prof.
H.-U. Reissig and the Alexander von Humboldt Stiftung for ‘Wie-
dereinladung’ for a stay at the FU Berlin during May, June-2008.
S.K.U. thanks CSIR for a fellowship.
Scheme 3.
cal by abstraction of a bridgehead bromine from 3. This is followed
by preferential cyclization with the double bond in a 7-endo-trig
fashion instead of the alternative 6-exo-trig mode, resulting in a
more stabilized secondary radical. This radical then undergoes
addition to the other double bond in a 5-exo-trig fashion to afford
the tetracyclic amines 2a or 2b (Scheme 3).
The racemic amine 2a thus obtained through the radical cas-
cade route was employed in a Baylis–Hillman reaction with p-
nitrobenzaldehyde and methyl acrylate under sonication condi-
tion17 to give the Baylis–Hillman adduct in excellent yield (81%).
A similar result was obtained by employing tetracyclic amine 1
as the catalyst. While the tetracyclic amines 2a and 1 were good
catalysts, 3 failed to catalyze the Baylis–Hillman reaction.
References and notes
1. (a) Kato, T.; Mizoshita, N.; Kishimoto, K. Angew. Chem., Int. Ed. 2006, 45, 38; (b)
Gokel, G. W.; Leevy, W. M.; Weber, M. E. Chem. Rev. 2004, 104, 2723; (c) Gokel,
G. W.; Barbour, L. J.; Ferdani, R.; Hu, J. Acc. Chem. Res. 2002, 35, 878.
2. (a) Tsogoeva, S. B.; Wei, S. Chem. Commun. 2006, 1451; (b) Okino, T.; Hoashi, Y.;
Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119; (c) Prieto,
A.; Halland, N.; Jørgensen, K. A. Org. Lett. 2005, 7, 3897; (d) Austin, J. F.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172; (e) Denmark, S. E.;
Stavenger, R. A. J. Am. Chem. Soc. 2000, 122, 8837.
3. Reviews of the use of proline and its derivatives as organocatalysts, see: (a)
Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471; (b)
Notz, W.; Tanaka, F.; Barbas, C. F., III. Acc. Chem. Res. 2004, 37, 580; (c) List, B.
Acc. Chem. Res. 2004, 37, 548.
Pleased by the efficiency of the racemic amines 2a and 1 as cat-
alysts for the Baylis–Hillman reaction, we wanted to obtain them
in enantiomerically pure form. Attempts to resolve the amines 2a
and 1 by salt formation with various enantiomerically pure acids
met with failure as the diastereomeric mixture of the salts formed
could not be purified on repeated crystallization. Because of these
difficulties, we relied on the chiron approach to obtain the optically
active amines 2a and 1. The diastereomeric diols 11 and 12 ob-
4. For reviews, see: (a) Marcelli, T.; van Maarseveen, J. H.; Hiemstra, H. Angew.
Chem., Int. Ed. 2006, 45, 7496; (b) Tian, S.-K.; Chen, Y.; Hang, J.; Tang, L.;
McDaid, P.; Deng, L. Acc. Chem. Res. 2004, 37, 621; (c) France, S.; Guerin, D. J.;
Miller, S. J.; Lectka, T. Chem. Rev. 2003, 103, 2985; (d) Chen, Y.; McDaid, P.;
´
Deng, L. Chem. Rev. 2003, 103, 2965; (e) Kacprzak, K.; Gawronski, J. Synthesis
2001, 961.
5. For use of cinchona alkaloid derivatives as organocatalysts, see: (a) Marcelli, T.;
van der Haas, R. N. S.; van Maarseveen, J. H.; Hiemstra, H. Angew. Chem., Int. Ed.
2006, 45, 929; (b) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B.
M.; Deng, L. Angew. Chem., Int. Ed. 2005, 44, 105; (c) Ye, J.; Dixon, D. J.; Hynes, P.
S. Chem. Commun. 2005, 4481; (d) Li, H.; Song, J.; Liu, X.; Deng, L. J. Am. Chem.
Soc. 2005, 127, 8948; (e) Liu, X.; Li, H.; Deng, L. Org. Lett. 2005, 7, 167; (f) Li, H.;
Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906.
tained from
for this task (Scheme 4).
D
-mannitol as described recently12 were employed
6. (a) Oishi, T.; Oguri, H.; Hirama, M. Tetrahedron: Asymmetry 1995, 6, 1241; (b)
Oishi, T.; Hirama, M. Tetrahedron Lett. 1992, 33, 639.
7. Barrett, A. G. M.; Cook, A. S.; Kamimura, A. Chem. Commun. 1998, 2533.
8. Barrett, A. G. M.; Dozzo, P.; White, A. J. P.; Williams, D. J. Tetrahedron 2002, 58,
7303.
9. For reviews on the Baylis–Hillman reaction, see: (a) Basavaiah, D.; Rao, K. V.;
Reddy, R. J. Chem. Soc. Rev. 2007, 36, 1581; (b) Masson, G.; Housseman, C.; Zhu,
J. Angew. Chem., Int. Ed. 2007, 46, 4614; (c) Basavaiah, D.; Jaganmohan Rao, A.;
Satyanarayana, T. Chem. Rev. 2003, 103, 811.
10. (a) Dhimane, A.-L.; A, C.; Malacria, M. Angew. Chem., Int. Ed. 2002, 41, 3284; (b)
Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237; (c) Curran, D.
P. Synthesis 1988, 417; (d) Zard, S. Z. Radicals Reactions in Organic Synthesis;
Oxford University Press: New York, 2003.
11. For recent examples of tandem radical cyclizations, see: (a) Moman, E.;
Nicoletti, D.; Mouriño, A. Org. Lett. 2006, 8, 1249; (b) Shen, L.; Hsung, R. P. Org.
Lett. 2005, 7, 775; (c) Lee, H.-Y.; Lee, S.; Kim, B. G.; Bahn, J. S. Tetrahedron Lett.
2004, 45, 7225; (d) Allan, G. M.; Parsons, A. F.; Pons, J.-F. Synlett 2002, 1431.
13. Procedure for radical cascade cyclization (Table 1, entry a): Tetracyclic amine (2a)
and tetracyclic amine (2b). The radical reaction was carried out in a 500 mL
round-bottomed flask equipped with a teflon coated stirring bar and a reflux
condenser connected to a three way stopcock, one end of which was sealed
with precision seal rubber septum to which was passed the needle of the
syringe pump and other end was connected with an argon balloon. The flask
was charged with bis-allyl amine 3 (400 mg, 0.69 mmol) along with AIBN
(20 mg, 0.12 mmol). Dry, argon purged benzene (160 mL) was injected and the
MeO
Br
OMe
Br
(1) NaIO4, MeCN
H2O, 0-5 oC, 1 h
(+)-5
NH2
(2)
Br
Br
OH
4 Å MS, MeOH,18 h
(3) NaBH4, 0 oC-rt
4 h, 97%
OH
11
(-)-1
MeO
Br
OMe
Br
(+)-1
Br
Br
OH
OH
12
Scheme 4.