Organic Letters
Letter
Edwards, H.; Hunt, F.; Kindon, N.; Pairaudeau, G.; Theaker, J.; Warner,
D. J. Bioorg. Med. Chem. Lett. 2010, 20, 7458−7461.
(7) For reviews on the direct functionalization of N-heterocycles, see:
(a) Mitchell, E. A.; Peschiulli, A.; Lefevre, N.; Meerpoel, L.; Maes, B. U.
W. Chem.Eur. J. 2012, 18, 10092−10142. (b) Campos, K. R. Chem.
Soc. Rev. 2007, 36, 1069−1084.
In summary, we have demonstrated that bespoke SnAP
reagents are readily prepared and suitable for the synthesis of
substituted bicyclic and spirocyclic morpholines and piperazines.
Despite the more elaborate SnAP reagents, the key cyclization
occurs under the same standard, operationally simple conditions
previously established for monosubstituted N-heterocycles. This
work demonstrates the remarkably broad substrate scope of
SnAP chemistry, with respect not only to the aldehyde but also to
more elaborate SnAP reagents themselves. Although our strategy
does not provide access to all possible classes of bicyclic N-
heterocycles or all positional and structural isomers of C-
substituted bicyclic and spirocyclic N-heterocycles, it offers a
reliable and predictable route to a significant proportion of the
scaffolds currently in demand for modern drug development.
(8) For a recent review on the synthesis of N-heterocycles, see: Vo, C.-
V. T.; Bode, J. W. J. Org. Chem. 2014, 79, 2809−2815 and references
therein.
(9) Vo, C.-V. T.; Mikutis, G.; Bode, J. W. Angew. Chem., Int. Ed. 2013,
52, 1705−1708.
(10) Luescher, M. U.; Vo, C.-V. T.; Bode, J. W. Org. Lett. 2014, 16,
1236−1239.
(11) Vo, C.-V. T.; Luescher, M. U.; Bode, J. W. Nat. Chem. 2014, 6,
310−314.
(12) Siau, W.-Y.; Bode, J. W. J. Am. Chem. Soc. 2014, 136, 17726−
17729.
ASSOCIATED CONTENT
* Supporting Information
■
(13) For examples of two-component cross-coupling reactions that
afford spirocyclic compounds, see: (a) Barroso, R.; Valencia, R. A.;
Cabal, M.-P.; Valdes, C. Org. Lett. 2014, 16, 2264−2267. (b) Reddy, B.
́
V. S.; Medaboina, D.; Sridhar, B.; Sinarapu, K. K. J. Org. Chem. 2014, 79,
2289−2295. (c) Prandi, C.; Deagostino, A.; Venturello, P.; Occhiato, E.
G. Org. Lett. 2005, 7, 4345−4348. (d) Zhou, J.; Zhou, L.; Yeung, Y.-Y.
Org. Lett. 2012, 14, 5250−5253. (e) Yin, X.-P.; Zeng, X.-P.; Liu, Y.-L.;
Liao, F.-M.; Yu, J.-S.; Zhou, F.; Zhou, J. Angew. Chem., Int. Ed. 2014, 53,
13740−13745.
(14) For another approach to the synthesis of saturated spirocycles,
see: Perry, M. A.; Hill, R. R.; Rychnovsky, S. D. Org. Lett. 2013, 15,
2226−2229.
(15) For the synthesis and uses of 1,7-diazaspiro(5.5)undecane, see:
Cordes, J.; Murray, P. R. D.; White, A. J. P.; Barrett, A. G. M. Org. Lett.
2013, 15, 4992−4995.
(16) The amino alcohol for the synthesis of SnAP reagent 4 is
commercially available. For the synthesis of amino alcohol for SnAP
S
Detailed experimental procedures, NMR spectra, X-ray analysis,
and characterization data. This material is available free of charge
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by European Research Council (ERC
Starting Grant No. 306793−CASAA and ERC Proof of Concept
Grant No. 620214−SnAP). We thank the LOC Mass
Spectrometry Service, the LOC NMR Service, and the Small
reagent 5, see: Antoni, P.; Hed, Y.; Nordberg, A.; Nystrom, D.; von
̈
Holst, H.; Hult, A.; Malkoch, M. Angew. Chem., Int. Ed. 2009, 48, 2126−
2130.
Molecule Crystallography Center of ETH Zurich for X-ray
(17) The diastereomeric ratio (dr) of these products was not easy to
assign from the 1H NMR spectra of the crude reaction mixtures, due to
rotamers. However, these diastereomers could be separated by HPLC.
(18) Rogers-Evans, M.; Knust, H.; Plancher, J.-M.; Carreira, E. M.;
̈
measurements. Guido Moller (ETH Zurich) is acknowledged for
̈
̈
amino alcohols S1 and S2.
Wuitschik, G.; Burkhard, J.; Li, D. B.; Guer
499.
́
ot, C. Chimia 2014, 68, 492−
REFERENCES
■
(1) (a) Reymond, J.-L.; Awale, M. ACS Chem. Neurosci. 2012, 3, 649−
657. (b) Reymond, J.-L.; van Deursen, R.; Blum, L. C.; Ruddigkeit, L.
Med. Chem. Commun. 2010, 1, 30−38.
(2) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57,
10257−10274.
(3) For a recent review of spirocyclic N-heterocycles, see: Carreira, E.
M.; Fessard, T. C. Chem. Rev. 2014, 114, 8257−8322.
(19) Burkhard, J. A.; Wuitschik, G.; Plancher, J.-M.; Rogers-Evans, M.;
Carreira, E. M. Org. Lett. 2013, 15, 4312−4315.
(20) CCDC number 1042707 (11f) contains the supplementary
crystallographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via www.
(4) (a) Lovering, F. Med. Chem. Commun. 2013, 4, 515−519.
(b) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52, 6752−
6756. (c) Hung, A. W.; Ramek, A.; Wang, Y.; Kaya, T.; Wilson, J. A.;
Clemons, P. A.; Young, D. W. Proc. Natl. Acad. Sci. U.S.A. 2011, 108,
6799−6804.
(5) For selected examples of the use of spirocyclic scaffolds in drug
discovery, see: (a) Zheng, Y.; Tice, C. M.; Singh, S. B. Bioorg. Med. Chem.
Lett. 2014, 24, 3673−3682. (b) Kumar, S.; Thornton, P. D.; Santini, C.
ACS Comb. Sci. 2013, 15, 564−571. (c) Franz, A. K.; Hanhan, N. V.;
Ball-Jones, N. R. ACS Catal. 2013, 3, 540−553. (d) Li, D. B.; Roger-
Evans, M.; Carreira, E. M. Org. Lett. 2013, 15, 4766−4769. (e) Zhou, J.;
Campbell-Conroy, E. L.; Silina, A.; Uy, J.; Pierre, F.; Hurley, D. J.;
Hilgraf, N.; Frieman, B. A.; DeNinno, M. P. J. Org. Chem. 2015, 80, 70−
79.
(6) For selected examples, see: (a) Kolocouris, N.; Kolocouris, A.;
Foscolo, G. B.; Fytas, G.; Neyts, J.; Padalko, E.; Balzarini, J.; Snoek, R.;
Andrei, G.; De Clercq, E. J. Med. Chem. 1996, 39, 3307−3318.
(b) Kumar, S.; Thornton, P. D.; Painter, T. O.; Jain, P.; Downard, J.;
Douglas, J. T.; Santini, C. J. Org. Chem. 2013, 78, 6529−6539.
(c) Stocks, M. J.; Alcaraz, L.; Bailey, A.; Bowers, K.; Donald, D.;
1937
Org. Lett. 2015, 17, 1934−1937