Journal of the American Chemical Society
Page 4 of 12
Frenking, G., Are They Linear, Bent, or Cyclic? Quantum Chemical
Investigation of the Heavier Group 14 and Group 15 Homologues of HCN and
HNC. Chem. Asian J. 2012, 7, 1296-1311.
(4) Parent phosphasilenylidene HP=Si:, as well as Mes*P=Si(IDipp), an aryl
derivative stabilized at silicon, are reported, see: (a) Lattanzi, V.; Thorwirth, S.;
Halfen, D. T.; Mück, L. A.; Ziurys, L. M.; Thaddeus, P.; Gauss, J.; McCarthy, M.
C., Bonding in the Heavy Analogue of Hydrogen Cyanide: The Curious Case of
Bridged HPSi. Angew. Chem. Int. Ed. 2010, 49, 5661-5664; (b) Geiß, D.; Arz,
M. I.; Straßmann, M.; Schnakenburg, G.; Filippou, A. C., Si=P Double Bonds:
and LUMO are essentially pz atomic orbitals at phosphorus and tin
atoms, respectively.
1
2
3
4
5
6
7
8
In conclusion, we described the synthesis and electronic structure of
germylene– and stannylene–phosphinidenes stabilized by NHC at the
phosphorus atom. These compounds contain reactive P–E bonds (E =
Ge, Sn), and open an access to zwitterionic heavier imine analogues, as
was demonstrated for the tin derivative. Notably, the latter showed
high catalytic activity in the hydroboration of aromatic aldehydes and
ketones, drastically different to that of the germanium congener.
Further coordination chemistry and catalytic applications are currently
under investigation.
Experimental
and
Theoretical
Study
of
an
NHC-Stabilized
Phosphasilenylidene. Angew. Chem. 2015, 127, 2777-2782; c) Nesterov, V.;
Breit, N. C.; Inoue, S., Advances in Phosphasilene Chemistry. Chem. Eur. J.
2017, 23 , 12014-12039
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(5) (a) Ionkin, A. S.; Marshall, W. J., Synthesis and Unusual Thermal Behavior
of (Lithium phosphino/amino) Difluorosilanes. Organometallics 2003, 22,
4136-4144; (b) Pietschnig, R.; Orthaber, A., Towards Heteronuclear Triple
Bonds Involving Silicon or Germanium. Phosphorus Sulfur Silicon and Relat.
Elem. 2011, 186, 1361-1363; (c) Johnson, Brian P.; Almstätter, S.; Dielmann,
F.; Bodensteiner, M.; Scheer, M., Synthesis and Reactivity of Low-Valent Group
14 Element Compounds Z. Anorg. Allg. Chem. 2010, 636, 1275-1285; (d)
Hinz, A.; Goicoechea, J. M., Limitations of Steric Bulk: Towards Phospha-
germynes and Phospha-stannynes. Chem. Eur. J. 2018, 24 , 7358-7363.
(6) (a) Inoue, S.; Wang, W.; Präsang, C.; Asay, M.; Irran, E.; Driess, M., An
Ylide-like Phosphasilene and Striking Formation of a 4π-Electron, Resonance-
Stabilized 2,4-Disila-1,3-diphosphacyclobutadiene. J. Am. Chem. Soc. 2011,
133, 2868-2871; (b) Sen, S. S.; Khan, S.; Roesky, H. W.; Kratzert, D.; Meindl,
K.; Henn, J.; Stalke, D.; Demers, J.-P.; Lange, A., Zwitterionic Si-C-Si-P and Si-
P-Si-P Four-Membered Rings with Two-Coordinate Phosphorus Atoms.
Angew. Chem. Int. Ed. 2011, 50 , 2322-2325; c) Seitz, A. E.; Eckhardt, M.;
Erlebach, A.; Peresypkina, E. V.; Sierka, M.; Scheer, M., Pnictogen–Silicon
Analogues of Benzene. J. Am. Chem. Soc. 2016, 138 , 10433-10436.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS
Publications website at DOI:.
Full synthetic and characterizing data for new compounds,
representative NMR spectra, details of computational studies (PDF)
Crystallographic data (CCDC Compound 1: 1946724, Compound 2:
1946725, Compound 3: 1946726, Compound 4: 1946727, Compound
5: 1946728)(CIF)
AUTHOR INFORMATION
Corresponding Author
(7) (a) Yao, S.; Xiong, Y.; Szilvási, T.; Grützmacher, H.; Driess, M., From a
Phosphaketenyl-Functionalized
Germylene
to
1,3-Digerma-2,4-
diphosphacyclobutadiene. Angew. Chem. Int. Ed. 2016, 55, 4781-4785; (b)
Wu, Y.; Liu, L.; Su, J.; Zhu, J.; Ji, Z.; Zhao, Y., Isolation of a Heavier
ORCID
Cyclobutadiene
Analogue:
2,4-Digerma-1,3-diphosphacyclobutadiene.
Vitaly Nesterov: 0000-0003-4744-5843
Franziska Hanusch: 0000-0002-9509-194X
Arturo Espinosa Ferao: 0000-0003-4452-0430
Shigeyoshi Inoue: 0000-0001-6685-6352
Organometallics 2016, 35, 1593-1596.
(8) Xiong, Y.; Yao, S.; Szilvási, T.; Ballestero-Martínez, E.; Grützmacher, H.;
Driess, M., Unexpected Photodegradation of a Phosphaketenyl-Substituted
Germyliumylidene Borate Complex. Angew. Chem. Int. Ed. 2017, 56, 4333-
4336.
(9) (a) Del Rio, N.; Baceiredo, A.; Saffon-Merceron, N.; Hashizume, D.;
Notes
The authors declare no competing financial interests.
Lutters, D.; Müller, T.; Kato, T.,
A
Stable Heterocyclic
Amino(phosphanylidene-σ4-phosphorane) Germylene. Angew. Chem. Int. Ed.
2016, 55 , 4753-4758.
(10) Nesterov, V.; Reiter, D.; Bag, P.; Frisch, P.; Holzner, R.; Porzelt, A.; Inoue,
S., NHCs in Main Group Chemistry. Chem. Rev. 2018, 118 , 9678-9842.
(11) Wendel, D.; Reiter, D.; Porzelt, A.; Altmann, P. J.; Inoue, S.; Rieger, B.,
Silicon and Oxygen’s Bond of Affection: An Acyclic Three-Coordinate Silanone
and Its Transformation to an Iminosiloxysilylene. J. Am. Chem. Soc. 2017, 139,
17193-17198; (b) Wendel, D.; Szilvási, T.; Henschel, D.; Altmann, P. J.; Jandl,
C.; Inoue, S.; Rieger, B., Precise Activation of Ammonia and Carbon Dioxide by
an Iminodisilene. Angew. Chem. Int. Ed. 2018, 57, 14575-14579 and references
therein; (c) Ochiai, T.; Franz, D.; Inoue, S., Applications of N-heterocyclic
imines in main group chemistry. Chem. Soc. Rev. 2016, 45, 6327-6344.
(12) (a) Krachko, T.; Slootweg, J. C., N-Heterocyclic Carbene–Phosphinidene
Adducts: Synthesis, Properties, and Applications. Eur. J. Inorg. Chem. 2018,
2734-2754; (b) Doddi, A.; Peters, M.; Tamm, M., N-Heterocyclic Carbene
Adducts of Main Group Elements and Their Use as Ligands in Transition Metal
Chemistry. Chem. Rev. 2019, 119 , 6994-7112
ACKNOWLEDGMENT
We gratefully acknowledge financial support from the European
Research Council (SILION 637394) and WACKER Chemie AG. We
thank Dr. Philipp Altmann for SC-XRD analysis of 2, and Debotra
Sarkar M. Sc. for providing [MesTerGeCl]2.
REFERENCES
(1) (a) Power, P. P., Main-Group Elements as Transition Metals. Nature 2010,
463, 171; (b) Chu, T.; Nikonov, G. I., Oxidative Addition and Reductive
Elimination at Main-Group Element Centers. Chem. Rev. 2018, 118, 3608-
3680; (c) Hadlington, T. J.; Driess, M.; Jones, C., Low-valent group 14 element
hydride chemistry: towards catalysis. Chem. Soc. Rev. 2018, 47, 4176-4197; (d)
Weetman, C.; Inoue, S., The Road Travelled: After Main-Group Elements as
Transition Metals. ChemCatChem 2018, 10 , 4213-4228.
(2) Lee, V. Ya., Sekiguchi, A. Organometallic Compounds of Low‐Coordinate
Si, Ge, Sn and Pb: From Phantom Species to Stable Compounds. John Wiley &
Sons, Ltd: Chichester, 2010.
(3) (a) Lai, C.-H.; Su, M.-D.; Chu, S.-Y., Effects of First-Row Substituents on
Silicon−Phosphorus Triple Bonds. Inorg. Chem. 2002, 41, 1320-1322; (b) Hu,
Y.-H.; Su, M.-D., Substituent effect on relative stabilities of the phosphorus and
tin multiple bonds. Chem. Phys. Lett. 2003, 378, 289-298; (c) Chen, C.-H.; Su,
M.-D., Theoretical Design of Silicon–Phosphorus Triple Bonds: A Density
Functional Study. Eur. J. Inorg. Chem. 2008, 1241-1247; (d) Devarajan, D.;
(13) Simons, R. S.; Pu, L.; Olmstead, M. M.; Power, P. P., Synthesis and
Characterization of the Monomeric Diaryls M{C6H3-2,6-Mes2}2 (M = Ge, Sn,
or Pb; Mes
= 2,4,6-Me3C6H2-) and Dimeric Aryl−Metal Chlorides
[M(Cl){C6H3-2,6-Mes2}]2 (M = Ge or Sn). Organometallics 1997, 16, 1920-
1925.
(14) Doddi, A.; Bockfeld, D.; Bannenberg, T.; Jones, P. G.; Tamm, M., N-
Heterocyclic Carbene–Phosphinidyne Transition Metal Complexes. Angew.
Chem. Int. Ed. 2014, 53, 13568-13572.
(15) Mizuhata, Y.; Sasamori, T.; Tokitoh, N., Stable Heavier Carbene
Analogues. Chem. Rev. 2009, 109 , 3479-3511.
(16) (a) Usher, M.; Protchenko, A. V.; Rit, A.; Campos, J.; Kolychev, E. L.;
Tirfoin, R.; Aldridge, S., A Systematic Study of Structure and E−H Bond
ACS Paragon Plus Environment