10.1002/chem.201803508
Chemistry - A European Journal
COMMUNICATION
HRMS along with the side-product BnO-BPin further confirming
the proposed catalytic cycle.
In this work we have presented the first example of the use
of arsenic for homogeneous catalyst for the hydroboration of
aldehydes with HBPin. A benzo-fused diaza-benzyloxy-arsole
acts as a pre-catalyst and can be employed under mild conditions
to give rapid quantitative conversions to the reduced product with
most reductions requiring just 30 minutes to reach completion.
While the present arsenic species act as precursors for
hydroboration catalysis, similar to the analogous phospholene
and phosphenium cation-based pre-catalysts, the reduced Lewis
acidity provides unique functional group tolerances and
alternative selectivities. This provides new insight into the
reactivity and main group catalyst design which exploits the
reduced Lewis acidity of arsenic. The scope of catalytic reactions
that can be performed using homogenous arsenic based catalysts
are ongoing within our research group.
Keywords: Arsenic • Hydroboration • Catalysis • Main Group •
Scheme 3. Proposed catalytic cycle for the hydroboration of aldehydes with
HBPin using the benzo-fused arsole 3 in catalytic quantities.
Boron
References:
[1]
[2]
a) D. Gudat, Acc. Chem. Res. 2010, 43, 1307–1316; b) D.
Herrmannsdörfer, M. Kaaz, O. Puntigam, J. Bender, M. Nieger, D. Gudat,
Eur. J. Inorg. Chem. 2015, 4819–4828; c) D. Gudat, Dalton Trans. 2016,
45, 5896–5907.
[10] C. C. Chong, R. Kinjo, ACS Catal. 2015, 5, 3238–3259.
[11] a) T. Ohmura, Y. Yamamoto, N. Miyaura, J. Am. Chem. Soc. 2000, 122,
4990–4991; b) R. Barbeyron, E. Benedetti, J. Cossy, J.-J. Vasseur, S.
Arseniyadis, M. Smietana, Tetrahedron 2014, 70, 8431–8452; c) S.
Bagherzadeh, N. P. Mankad, Chem. Commun. 2016, 52, 3844–3846.
[12] a) P. Eisenberger, A. M. Bailey, C. M. Crudden, J. Am. Chem. Soc. 2012,
134, 17384–17387; b) C. C. Chong, R. Kinjo, ACS Catal. 2015, 5, 3238–
3259; c) Q. Yin, S. Kemper, H. F. T. Klare, M. Oestreich, Chem. Eur. J.
2016, 22, 13840–13844; d) Q. Yin, Y. Soltani, R. L. Melen, M. Oestreich,
Organometallics 2017, 36, 2381–2384; e) J. R. Lawson, L. C. Wilkins, R.
L. Melen, Chem. Eur. J. 2017, 23, 10997–11000.
a) D. Gudat, A. Haghverdi, M. Nieger, Angew. Chem. Int. Ed. 2000, 39,
3084-3086; b) S. Burck, D. Gudat, M. Nieger, W.-W. Du Mont, J. Am.
Chem. Soc. 2006, 128, 3946–3955.
[3]
[4]
[5]
[6]
[7]
C. C. Chong, H. Hirao, R. Kinjo, Angew. Chem. Int. Ed. 2015, 54, 190–
94.
M. R. Adams, C.-H. Tien, B. S. N. Huchenski, M. J. Ferguson, A. W. H.
Speed, Angew. Chem. Int. Ed. 2017, 56, 6268–6271.
M. R. Adams, C.-H. Tien, R. McDonald, A. W. H. Speed, Angew. Chem.
Int. Ed. 2017, 56, 16660–16663.
[13] a) T. T. P. Tran, D. M. C. Ould, L. C. Wilkins, D. S. Wright, R. L. Melen,
J. M. Rawson, CrystEngComm 2017, 19, 4696-4699; b) D. M. C. Ould,
A. C. Rigby, L. C. Wilkins, S. J. Adams, J. A. Platts, S. J. A. Pope, E.
Richards, R. L. Melen, Organometallics 2018, 37, 712–719.
S. Miaskiewicz, J. H. Reed, P. A. Donets, C. C. Oliveira, N. Cramer,
Angew. Chem. Int. Ed. 2018, 57, 4039–4042.
a) B. Rao, C. C. Chong, R. Kinjo, J. Am. Chem. Soc. 2018, 140, 652–
656; b) T. Hynes, E. N. Welsh, R. McDonald, M. J. Ferguson, A. W. H.
Speed, Organometallics 2018, 37, 841–844.
[14] a) L. H. Doerrer, J. C. Green, M. L. H. Green, I. Haiduc, C. N. Jardine, S.
I. Pascu, L. Silaghi-Dumitrescuc, D. J. Watkin, J. Chem. Soc., Dalton
Trans. 2000, 3347–3355; b) D. Lu, M. L. Coote, J. Ho, N. L. Kilah, C.-Y.
Lin, G. Salem, M. L. Weir, A. C. Willis, S. B. Wild, Organometallics 2012,
31, 1808−1816.
[8]
[9]
C. C. Chong, H. Hirao, R. Kinjo, Angew. Chem. Int. Ed. 2014, 53, 3342–
3346.
C. C. Chong, R. Kinjo, Angew. Chem. Int. Ed. 2015, 54, 12116–12120.
This article is protected by copyright. All rights reserved.