Communication
ChemComm
allows enhanced reactivity of substrates that were formerly
recalcitrant under traditional approaches.
We would like to thank the EPSRC for funding (JLC,
EP/L016443/1; RLM, EP/R026912/1).
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 J. V. Obligacion and P. J. Chirik, Nat. Rev. Chem., 2018, 2, 15–34.
2 C. M. Crudden and D. Edwards, Eur. J. Org. Chem., 2003, 4695–4712.
3 P. Kaur, G. L. Khatik and S. K. Nayak, Curr. Org. Synth., 2017, 14,
665–682.
4 J. Huang, W. Yan, C. Tan, W. Wu and H. Jiang, Chem. Commun.,
2018, 54, 1770–1773.
5 B. Sundararaju and A. Fu¨rstner, Angew. Chem., Int. Ed., 2013, 52,
14050–14054.
6 A. Edwards, M. Rubina and M. Rubin, Chem. – Eur. J., 2018, 24,
1394–1403.
Fig. 3 Hydroboration of alkenes and alkynes. Conversions for 3a–k
determined from 1H NMR spectroscopy, isolated yield in parentheses.
a
3 : 1 product ratio.
7 J. V. Obligacion and P. J. Chirik, J. Am. Chem. Soc., 2013, 135, 19107–19110.
8 M. Espinal-Viguri, C. R. Woof and R. L. Webster, Chem. – Eur. J.,
2016, 22, 11605–11608.
9 N. Ang, C. Buettner, S. Docherty, A. Bismuto, J. Carney, J. Docherty,
M. Cowley and S. Thomas, Synthesis, 2018, 803–808.
considered more practical. The conditions for the microwave
reaction were optimised for the hydroboration of phenylacetylene
using 1.1 equivalents of HBPin (Table 2 and ESI†). The control
reaction with no borane catalyst showed negligible conversion 10 A. Bismuto, M. J. Cowley and S. P. Thomas, ACS Catal., 2018, 2001–2005.
after 90 minutes (entry 3, Table 2). Adding 2 mol% of B(3,4,5-ArF)3
allowed the reaction to take place showing conversions of 47%,
11 J. R. Lawson, L. C. Wilkins and R. L. Melen, Chem. – Eur. J., 2017, 23,
10997–11000.
12 Q. Yin, Y. Soltani, R. L. Melen and M. Oestreich, Organometallics,
63% and 71% after 20, 40 and 90 minutes respectively (entries
5–7, Table 2). Increasing the catalytic loading to 5 mol% saw
much improved conversions of 77% after 20 minutes, 86% after
40 minutes and quantitative conversion was observed after
90 minutes (entries 8–10, Table 2). Importantly, identical reaction
conditions using a Parr reactor vessel only yielded 40% conversion
2017, 36, 2381–2384.
13 Q. Yin, S. Kemper, H. F. T. Klare and M. Oestreich, Chem. – Eur. J.,
2016, 22, 13840–13844.
¨
14 M. Fleige, J. Mobus, T. vom Stein, F. Glorius and D. W. Stephan,
Chem. Commun., 2016, 52, 10830–10833.
15 D. Mukherjee, A. Ellern and A. D. Sadow, Chem. Sci., 2014, 5, 959–964.
16 C. Weetman, M. S. Hill and M. F. Mahon, Chem. – Eur. J., 2016, 22,
7158–7162.
(entry 3, Table 2). For investigating the scope of the reaction, we 17 Z. Yang, M. Zhong, X. Ma, K. Nijesh, S. De, P. Parameswaran and
H. W. Roesky, J. Am. Chem. Soc., 2016, 138, 2548–2551.
18 T. J. Hadlington, M. Hermann, G. Frenking and C. Jones, J. Am.
chose to use a reaction time of 90 minutes and a 5 mol% catalyst
loading. Using these conditions, hydroboration of both terminal
Chem. Soc., 2014, 136, 3028–3031.
and internal unsaturated homonuclear bonds was achievable 19 Y. Wu, C. Shan, J. Ying, J. Su, J. Zhu, L. L. Liu and Y. Zhao, Green
Chem., 2017, 19, 4169–4175.
20 T. Hynes, E. N. Welsh, R. McDonald, M. J. Ferguson and
(Fig. 3).
Mono- and di-substituted terminal alkenes worked well in
A. W. H. Speed, Organometallics, 2018, 37, 841–844.
the microwave and gave the anti-Markovnikov alkane products 21 M. R. Adams, C.-H. Tien, R. McDonald and A. W. H. Speed, Angew.
Chem., Int. Ed., 2017, 56, 16660–16663.
22 D. M. C. Ould and R. L. Melen, Chem. – Eur. J., 2018, 24, 15201–15204.
23 A. Bismuto, S. P. Thomas and M. J. Cowley, Angew. Chem., Int. Ed.,
3a–d in quantitative yields. Other styrene derivatives were also
isolated exclusively as the anti-Markovnikov product (3e–g),
albeit with decreased yields. Terminal alkynes worked well yielding
3h and 3i in 92% and 83% respectively. Diphenylacetylene on the
other hand resulted in just 50% conversion to 3j. The internal
alkyne prop-1-yn-1-ylbenzene also worked well albeit producing an
inseparable mixture of the Markovnikov and anti-Markovnikov
products (3k). For the microwave reactions, it is likely that a new
catalytic species HnB(3,4,5-ArF)3Àn is generated in situ evidenced by
the observation that BH3ÁSMe2 showed some conversion under the
same conditions (Table 2, entry 11). Further studies to make and
test the activity of HnB(3,4,5-ArF)3Àn (n = 1, 2) are ongoing.
2016, 55, 15356–15359.
24 J. S. McGough, S. M. Butler, I. A. Cade and M. J. Ingleson, Chem. Sci.,
2016, 7, 3384–3389.
´
´
´
25 M. A. Legare, M. A. Courtemanche, E. Rochette and F. G. Fontaine,
Science, 2015, 349, 513–516.
26 R. J. Giguere, T. L. Bray, S. M. Duncan and G. Majetich, Tetrahedron
Lett., 1986, 27, 4945–4948.
27 R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge and
J. Rousell, Tetrahedron Lett., 1986, 27, 279–282.
28 M. Larhed, C. Moberg and A. Hallberg, Acc. Chem. Res., 2002, 35,
717–727.
29 C. O. Kappe, Angew. Chem., Int. Ed., 2004, 43, 6250–6284.
30 V. P. Mehta and E. V. Van der Eycken, Chem. Soc. Rev., 2011, 40, 4925.
31 S. W. Hadebe and R. S. Robinson, Tetrahedron Lett., 2006, 47, 1299–1302.
32 A. B. Dounay, L. E. Overman and A. D. Wrobleski, J. Am. Chem. Soc.,
2005, 127, 10186–10187.
In conclusion we have found an efficient Lewis acidic borane
catalyst for the hydroboration of a wide substrate scope, which
is tolerant of a variety of functional groups. Notably we have 33 B. D. Stevens, C. J. Bungard and S. G. Nelson, J. Org. Chem., 2006, 71,
6397–6402.
shown that the hydroboration activity and the scope of this
catalyst can be improved using microwave irradiation. Importantly,
34 S. Tussing and J. Paradies, Dalton Trans., 2016, 45, 6124–6128.
35 L. C. Wilkins, J. L. Howard, S. Burger, L. Frentzel-Beyme, D. L. Browne
this approach permits ready access to higher temperatures and thus
and R. L. Melen, Adv. Synth. Catal., 2017, 359, 2580–2584.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 318--321 | 321