Paper
Journal of Materials Chemistry C
analysis of the use of PcBCP2 and advanced engineering as a
compatibilizer is currently underway toward further applica-
tions in optoelectronics.
Y. Iwashima, K. Ohta, K. Hanabusa, H. Shirai and
N. Kobayashi, Chem. Commun., 2003, 2504–2505; (c)
P. Samor ´ı , H. Engelkamp, P. A. J. de Witte, A. E. Rowan,
R. J. M. Nolte and J. P. Rabe, Adv. Mater., 2005, 17, 1265–
1
268; (d) W. Zhang, K. Ochi, M. Fujiki, M. Naito,
Conclusions
M. Ishikawa, K. Kaneto, W. Takashima, A. Saeki and
S. Seki, Adv. Funct. Mater., 2012, 20, 3941–3947.
7 F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer and
A. P. H. J. Schenning, Chem. Rev., 2005, 105, 1491–1546.
8 F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem.,
1990, 41, 525–557.
9 (a) P. D. Topham, A. J. Parnell and R. C. Hiorns, J. Polym. Sci.,
Part B: Polym. Phys., 2011, 49, 1131–1156; (b) A. Yassar,
L. Miozzo, R. Gironda and G. Horowitz, Prog. Polym. Sci.,
2013, 38, 791–844.
In conclusion, we prepared a series of novel Pc-tethered (co)
polymers of PMMA and PMMA-b-PS using a combination of
ATRP and click chemistry. The Pc end-groups on the polymer
chains self-assembled through p–p interactions inside the
polymer lms; nevertheless, the Pc-PMMA-b-PS showed micro-
phase separation with domain spacings that depended on the
molecular weights of the block copolymers. The design of a Pc-
tethered block copolymer permits the concentration of semi-
conducting molecules inside conned columns and permits
their self-assembly. These ndings motivate us to utilize them 10 (a) M. Sommer, S. H u¨ ttner, S. Wunder and M. Thelakkat,
in organic devices such as OFETs or OPVs.
Adv. Mater., 2008, 20, 2523–2527; (b) M. Sommer,
S. Huettner and M. Thelakkat, J. Mater. Chem., 2010, 20,
1
0788–10797.
Acknowledgements
1
1
1 (a) S. K. Teoh, P. Ravi and S. K. C. Tam, J. Phys. Chem. B, 2005,
This work was partially supported by KAKENHI (23750169). We
thank Professors Takuzo Aida (The University of Tokyo) and
Krzysztof Matyjaszewski (Carnegie Mellon University) for tech-
nical support and valuable discussions.
1
09, 4431–4438; (b) F. Giacalone and N. Mart ´ı n, Adv. Mater.,
2010, 22, 4220–4248.
2 (a) M. Park, C. Harrison, P. M. Chaikin, R. A. Register and
D. H. Adamson, Science, 1997, 276, 1401–1404; (b)
R. A. Segalman, Mater. Sci. Eng., R, 2005, 48, 191–226; (c)
R. Ruiz, H. Kang, F. A. Detcheverry, E. Dobisz,
D. S. Kercher, T. R. Albrecht, J. J. de Pablo and
P. F. Nealey, Science, 2008, 321, 936–939; (d) C. Tang,
E. M. Lennon, G. H. Fredrickson, E. J. Kramer and
C. J. Hawker, Science, 2008, 322, 429–432.
Notes and references
1
(a) M. Hanack and D. Dini, in The Porphyrin Handbook, ed. K.
M. Kadish, K. M. Smith and R. Guilard, Academic Press, San
Diego, CA, 2003, vol. 18, pp. 251–280; (b) Phthalocyanine:
Properties and Applications, ed. C. C. Lenznoff and A. B.
Lever, VCH, New York, 1989/1993/1996, vol. 1–4; (c) G. de
la Torre, C. G. Claessens and T. Torres, Chem. Commun.,
1
3 (a) J.-S. Wang and K. Matyjaszewski, J. Am. Chem. Soc., 1995,
117, 5614–5615; (b) J.-S. Wang and K. Matyjaszewski,
Macromolecules, 1995, 28, 7901–7910; (c) T. E. Patten,
J. Xia, T. Abernathy and K. Matyjaszewski, Science, 1996,
2007, 2000–2015.
2
3
(a) M. Hanack and M. Lang, Adv. Mater., 1994, 6, 819–833; (b)
D. Markovitsi, I. L ´e cuyer and J. Simon, J. Phys. Chem., 1991,
2
72, 866–868.
4 (a) P. L. Golas and K. Matyjaszewski, QSAR Comb. Sci., 2007,
6, 1116–1134; (b) U. Mansfeld, C. Pietsch, R. Hoogenboom,
C. R. Becer and U. S. Schubert, Polym. Chem., 2010, 1, 1560–
598.
1
9
5, 3620–3626; (c) P. G. Schouten, J. M. Warman, M. P. de
Haas, J. F. van der Pol and J. W. Zwikker, J. Am. Chem. Soc.,
992, 114, 9028–9034.
2
1
1
(a) S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. H ¨a gele,
G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel and
M. Tosoni, Angew. Chem., Int. Ed., 2007, 46, 4832–4887; (b)
S. Sergeyev, W. Pisula and Y. H. Geerts, Chem. Soc. Rev.,
1
5 (a) M. Kasha, H. R. Rawls and M. A. El-Bayoumi, Pure Appl.
Chem., 1965, 11, 371–392; (b) M. Kimura, H. Ueki, K. Ohta,
K. Ohta, K. Hanabusa, H. Shirai and N. Kobayashi,
Langmuir, 2003, 19, 4825–4830; (c) S. M. S. Chauhan and
P. Kumari, Tetrahedron, 2009, 65, 2518–2524.
6 (a) C. Maeda, S. Yamaguchi, C. Ikeda, H. Shinokubo and
A. Osuka, Org. Lett., 2008, 10, 549–552; (b) M. Kimura,
Y. Nakano, N. Adachi, Y. Takewaki, H. Shirai and
N. Kobayashi, Chem.–Eur. J., 2009, 15, 2617–2624.
2
2
007, 36, 1902–1929; (c) B. R. Kaafarani, Chem. Mater.,
011, 23, 378–396.
1
4
(a) D. W ¨o hrle, Macromol. Rapid Commun., 2001, 22, 68–97; (b)
D. W ¨o hrle and G. Schnurpfeil, in The Porphyrin Handbook,
ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic
Press, San Diego, CA, 2003, vol. 17, pp. 177–246; (c)
N. B. McKeown, J. Mater. Chem., 2000, 10, 1979–1995.
(a) H. Schultz, H. Lehmann, M. Rein and M. Hanack, Struct.
Bonding, 1991, 74, 41–146; (b) H. Engelkamp, S. Middelbeek
and R. J. M. Nolte, Science, 1999, 284, 785–788.
1
7 O. E. Sielcken, M. M. V. Tilborg, M. F. M. Roks, R. Hendriks,
W. Drenth and R. J. M. Nolte, J. Am. Chem. Soc., 1987, 109,
5
6
4
261–4265.
8 K. Ban, K. Nishizawa, K. Ohta and H. Shirai, J. Mater. Chem.,
000, 10, 1083–1090.
1
1
2
(a) P. Gattinger, H. Rengel, D. Neher, M. Gurka, M. Buck,
A. M. van de Craats and J. M. Warman, J. Phys. Chem. B,
9 S. Seki, A. Saeki, T. Sakurai and D. Sakamaki, Phys. Chem.
Chem. Phys., 2014, 16, 11093–11113.
1999, 103, 3179–3186; (b) M. Kimura, K. Wada,
This journal is © The Royal Society of Chemistry 2015
J. Mater. Chem. C