Theranostics 2018, Vol. 8, Issue 7
2030
3
0. Sugahara S, Kajiki M, Kuriyama H, Kobayashi TR. Paclitaxel delivery systems:
the use of amino acid linkers in the conjugation of paclitaxel with
carboxymethyldextran to create prodrugs. Biol Pharm Bull. 2002; 25: 632-41.
1. Greenwald RB, Pendri A, Bolikal D. Highly water soluble taxol derivatives:
References
1
.
Ono C, Hsyu P-H, Abbas R, Loi C-M, Yamazaki S. Application of
physiologically based pharmacokinetic modeling to the understanding of
bosutinib pharmacokinetics: prediction of drug–drug and drug–disease
interactions. Drug Metab Disposition. 2017; 45: 390-8.
3
3
7-polyethylene glycol carbamates and carbonates. J Org Chem. 1995; 60: 331-6.
2. Yang T, Xu F, Fang D, Chen Y. Targeted proteomics enables simultaneous
quantification of folate receptor isoforms and potential isoform-based
diagnosis in breast cancer. Sci Rep. 2015; 5: 16733.
2
3
4
.
.
.
Bishai WR. Drug development: locking down metabolism. Nat Chem Biol.
2017; 13: 925-6.
3
3
3
3
3
3
3
3. Shan L, Liu M, Wu C, Zhao L, Li S, Xu L, et al. Multi-small molecule
Sofias AM, Dunne M, Storm G, Allen C. The battle of “nano” paclitaxel. Adv
Drug Del Rev. 2017; 122: 20-30.
Nehate C, Jain S, Saneja A, Khare V, Alam N, Dubey RD, et al. Paclitaxel
formulations: challenges and novel delivery options. Curr Drug Del. 2014; 11:
conjugations as new targeted delivery carriers for tumor therapy. Int
J
Nanomedicine. 2015; 10: 5571-91.
4. Eray M, Mättö M, Kaartinen M, Andersson LC, Pelkonen J. Flow cytometric
analysis of apoptotic subpopulations with a combination of Annexin V‐FITC,
propidium iodide, and SYTO 17. Cytometry. 2001; 43: 134-42.
5. Madjd Z, Durrant LG, Pinder SE, Ellis IO, Ronan J, Lewis S, et al. Do
poor-prognosis breast tumours express membrane cofactor proteins (CD46)?
Cancer Immunol Immunother. 2005; 54: 149-56.
6. Reddy JA, Westrick E, Vlahov I, Howard SJ, Santhapuram HK, Leamon CP.
Folate receptor specific anti-tumor activity of folate–mitomycin conjugates.
Cancer Chemother Pharmacol. 2006; 58: 229-36.
666-86.
5
6
.
.
Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, et al. Structural basis for
molecular recognition of folic acid by folate receptors. Nature. 2013; 500: 486-9.
Ledermann J, Canevari S, Thigpen T. Targeting the folate receptor: diagnostic
and therapeutic approaches to personalize cancer treatments. Ann Oncol.
2015; 26: 2034-43.
7
8
.
.
Talekar M, Kendall J, Denny W, Garg S. Targeting of nanoparticles in cancer:
drug delivery and diagnostics. Anticancer Drugs. 2011; 22: 949-62.
Moore KN, Borghaei H, O'Malley DM, Jeong W, Seward SM, Bauer TM, et al.
Phase 1 dose‐escalation study of mirvetuximab soravtansine (IMGN853), a
folate receptor α‐targeting antibody‐drug conjugate, in patients with solid
tumors. Cancer. 2017; 123: 3080-7.
7. Chen H, Jacobson O, Niu G, Weiss ID, Kiesewetter DO, Liu Y, et al. Novel
“add-on” molecule based on Evans blue confers superior pharmacokinetics
and transforms drugs to theranostic agents. J Nucl Med. 2017; 58: 590-7.
8. Chen H, Wang G, Lang L, Jacobson O, Kiesewetter DO, Liu Y, et al. Chemical
conjugation of Evans blue derivative:
a strategy to develop long-acting
9
.
Müller C, Struthers H, Winiger C, Zhernosekov K, Schibli R. DOTA conjugate
with an albumin-binding entity enables the first folic acid–targeted
therapeutics through albumin binding. Theranostics. 2016; 6: 243-53.
9. Tian R, Jacobson O, Niu G, Kiesewetter DO, Wang Z, Zhu G, et al. Evans blue
attachment enhances somatostatin receptor subtype-2 imaging and
radiotherapy. Theranostics 2018; 8: 735-45.
1
77Lu-radionuclide tumor therapy in mice. J Nucl Med. 2013; 54: 124-31.
1
1
0. Lee JW, Lu JY, Low P, Fuchs P. Synthesis and evaluation of taxol–folic acid
conjugates as targeted antineoplastics. Bioorg Med Chem. 2002; 10: 2397-414.
1. Low PS, Henne WA, Doorneweerd DD. Discovery and development of
folic-acid-based receptor targeting for imaging and therapy of cancer and
inflammatory diseases. Acc Chem Res. 2007; 41: 120-9.
4
4
0. Ehlerding EB, Lan X, Cai W. “Albumin hitchhiking” with an Evans blue
analog for cancer theranostics. Theranostics 2018; 8: 812-4.
1. Zhu GZ, Lynn GM, Jacobson O, Chen K, Liu Y, Zhang HM, et al.
Albumin/vaccine nanocomplexes that assemble in vivo for combination
cancer immunotherapy. Nat Commun. 2017; 8: 1954.
1
2. Zhao X, Jia X, Liu L, Zeng J, Tian K, Zhou T, et al. Double-cross-linked
hyaluronic acid nanoparticles with pH/reduction dual-responsive triggered
release and pH-modulated fluorescence for folate-receptor-mediated targeting
visualized chemotherapy. Biomacromolecules. 2016; 17: 1496-505.
4
4
2. Zhang FW, Zhu GZ, Jacobson O, Liu Y, Chen K, Yu GC, et al. Transformative
nanomedicine of an amphiphilic camptothecin prodrug for long circulation
and high tumor uptake in cancer therapy. ACS Nano. 2017; 11: 8838-48.
3. Chen WY, Zhou XZ, Wu LL, Wu YS, Wang SM, Liu B, et al. A UPLC/MS/MS
method for determination of protosappanin B in rat plasma and its application
of a pharmacokinetic and bioavailability study. Biomed Chromatogr. 2017; 31:
e3919.
1
1
3. Villanueva JR, Villanueva LR, Navarro MG. Pharmaceutical technology can
turn a traditional drug, dexamethasone into a first-line ocular medicine. A
global perspective and future trends. Int J Pharm. 2017; 516: 342-51.
4. Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and
pharmacokinetics, the blood-brain barrier, and central nervous system drug
discovery. NeuroRx. 2005; 2: 554-71.
44. Wang F, Shen Y, Xu X, Lv L, Li Y, Liu J, et al. Selective tissue distribution and
long circulation endowed by paclitaxel loaded PEGylated poly
1
1
5. Vlahov IR, Leamon CP. Engineering folate–drug conjugates to target cancer:
from chemistry to clinic. Bioconjug Chem. 2012; 23: 1357-69.
6. Vlahov IR, Santhapuram HKR, You F, Wang Y, Kleindl PJ, Hahn SJ, et al.
Carbohydrate-based synthetic approach to control toxicity profiles of folate−
drug conjugates. J Org Chem. 2010; 75: 3685-91.
(
ɛ-caprolactone-co-l-lactide) micelles leading to improved anti-tumor effects
and low systematic toxicity. Int J Pharm. 2013; 456: 101-12.
1
7. Rimac H, Debeljak Ž, Miller L. Displacement of drugs from human serum
albumin: from molecular interactions to clinical significance. Curr Med Chem.
2017; 24: 1930-47.
1
1
8. Sabbioni G, Turesky RJ. Biomonitoring human albumin adducts: the past, the
present, and the future. Chem Res Toxicol. 2016; 30: 332-66.
9. Lin T, Zhao P, Jiang Y, Tang Y, Jin H, Pan Z, et al.
Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug
delivery via albumin-binding protein pathways for antiglioma therapy. ACS
Nano. 2016; 10: 9999-10012.
2
2
0. Jacobson O, Kiesewetter DO, Chen X. Albumin-binding Evans blue
derivatives for diagnostic imaging and production of long-acting therapeutics.
Bioconjug Chem. 2016; 27: 2239-47.
1. Liu Y, Wang G, Zhang H, Ma Y, Lang L, Jacobson O, et al. Stable Evans blue
derived exendin-4 peptide for type 2 diabetes treatment. Bioconjug Chem.
2
015; 27: 54-8.
2
2
2
2. Zhang J, Lang L, Zhu Z, Li F, Niu G, Chen X. Clinical translation of an
albumin-binding PET radiotracer 68Ga-NEB. J Nucl Med. 2015; 56: 1609-14.
3. Niu G, Lang L, Kiesewetter DO, Ma Y, Sun Z, Guo N, et al. In vivo labeling of
serum albumin for PET. J Nucl Med. 2014; 55: 1150-6.
4. Zhivkova ZD. Quantitative structure–pharmacokinetic relationships for
plasma clearance of basic drugs with consideration of the major elimination
pathway. J Pharm Pharm Sci. 2017; 20: 135-47.
2
2
5. Rizk M, Zou L, Savic R, Dooley K. Importance of drug pharmacokinetics at the
site of action. Clin Transl Sci. 2017; 10: 133-42.
6. Kantae V, Krekels EH, Van Esdonk MJ, Lindenburg P, Harms AC, Knibbe CA,
et al. Integration of pharmacometabolomics with pharmacokinetics and
pharmacodynamics: towards personalized drug therapy. Metabolomics. 2017;
1
3: 9.
2
2
2
7. Zhang FW, Khan S, Li RC, Smolen JA, Zhang SY, Zhu GZ, et al. Design and
development of multifunctional polyphosphoester-based nanoparticles for
ultrahigh paclitaxel dual loading. Nanoscale. 2017; 9: 15773-7.
8. Bernabeu E, Cagel M, Lagomarsino E, Moretton M, Chiappetta DA. Paclitaxel:
What has been done and the challenges remain ahead. Int J Pharm. 2017; 526:
474-95.
9. Nehate C, Jain S, Saneja A, Khare V, Alam N, Dhar Dubey R, et al. Paclitaxel
formulations: challenges and novel delivery options. Curr Drug Deliv. 2014;
11: 666-86.