S. Bhattacharjee et al.
1
1
1
2
2
2
7. Esteves PA, Esloa M, Rodriguez LM, Olivia-compost A, Radim
H (2007) Aza-Michael reactions with vinyl sulfones and Amber-
lyst-15 as catalyst. Tetrahedron Lett 48:9040–9043
32. Alamgholiloo H, Rostamnia S, Zhang K, Lee TH, Lee YS, Varma
RS, Jang HW, Shokouhimehr M (2020) Boosting Aerobic Oxi-
dation of Alcohols via Synergistic Eꢀect between TEMPO and
a Composite Fe3O4/Cu-BDC/GO Nanocatalyst. ACS Omega
5:5182–5191
8. Nath J, Chaudhuri MK (2009) Phosphate Impregnated Titania:
An Eꢂcient Reusable Heterogeneous Catalyst for Aza-Michael
Reactions under Solvent-Free Condition. Catal Lett 133:388–393
9. Saidi MR, Pourshojaei Y, Aryanasa F (2009) Highly Eꢂcient
Michael Addition Reaction of Amines Catalyzed by Silica-Sup-
ported Aluminum Chloride. Synth Commun 39:1109–1119
0. Bosica G, Spiteri J, Borg C (2014) Aza-Michael reaction: selective
mono- versus bis-addition under environmentally-friendly condi-
tions. Tetrahedron 70:2449–2454
33. Alamgholiloo H, Rostamnia S, Hassankhani A, Liu X, Eftekhari
A, Hasanzadeh A, Zhang K, Karimi-Maleh H, Khaksar S, Varma
RS, Shokouhimehr M (2020) Formation and stabilization of col-
loidal ultra-small palladium nanoparticles on diamine-modiꢁed
Cr-IL-101: Synergic boost to hydrogen production from formic
acid. J Colloid Interf Sci 567:126–135
34. Jang MS, Yu K, Lee J, Ahn WS (2020) Sonochemical synthesis of
rho-ZMOF catalyst for an enhanced CO2 cycloaddition reaction.
Mater Lett 277:128387
1. Kalita P, Pegu CD, Dutta P, Baruah PK (2014) Room temperature
solvent free aza-Michael reactions over nano-cage mesoporous
materialsJ. Mol Catal A 394:145–150
35. Kim J, Cho HY, Ahn WS (2012) Synthesis and Adsorption/Cata-
lytic Properties of the Metal Organic Framework CuBTC. Catal
Surv Asia 16:106–119
2. Hosseinzadeh R, Aghili N (2016) M. Synthesis, Characterization
and Catalytic Application of MCM-41 Supported Phenanthro-
linium Dibromide Catalyst for Aza Michael Addition Reaction in
Aqueous Medium. Catal Lett 146:1194–1203
36. Hall J, Bollini P (2019) Structure, characterization, and catalytic
properties of open-metal sites in metal organic frameworks. React
Chem Eng 4:207–222
2
3. Rathod PB, Kumar KSA, Athawale AA, Pandey AKS, Chattopad-
hyay S (2018) Polymer-Shell-Encapsulated Magnetite Nanoparti-
cles Bearing Hexamethylenetetramine for Catalysing Aza-Michael
Addition Reactions. Eur J Org Chem 43:5980–5987
37. Kökçam-Demir U, Goldman A, Esraꢁli L, Gharib M, Morsali A,
Weingart O, Janiak C (2020) Coordinatively Unsaturated Metal
Sites (Open Metal Sites) in Metal-Organic Frameworks: Design
and Applications. Chem Soc Rev 49:2751–2798
2
2
2
2
4. Hakiki A, Kerbadou RM, Boukoussa B, Zahmani HH, Launay
F, Pailleret A, Pillier F, Hacini S, Bengueddach A, Hamacha RJ
38. Rostamnia S, Alamgholiloo H (2018) Synthesis and Catalytic
Application of Mixed Valence Iron (FeII/FeIII)-Based OMS-
MIL-100(Fe) as an Eꢂcient Green Catalyst for the azaMichael
Reaction. Catal Lett 148:2918–2928
(
2019) Inorg Organomet Poly Mater 29:1773–1784
5. Corma A, Garcia H, LlabrésiXamena FX (2010) Engineering
Metal Organic Frameworks for Heterogeneous Catalysis. Chem
Rev 110:4606–4655
39. Savonnet M, Aguado S, Ravon U, Bazer-Bachi D, Lecocq V, Bats
N, Pinel C, Farrusseng D (2009) Solvent free base catalysis and
transesteriꢁcation over basic functionalised Metal-Organic Frame-
works. Green Chem 11:1729–1732
6. Bhattacharjee S, Lee YR, Puthiaraj P, Cho SM, Ahn WS (2015)
Metal-Organic Frameworks for Catalysis. Catal Surv Asia
1
9:203–222
7. Hu ML, Safarifard V, Doustkhah E, Rostamnia S, Morsali A,
Nouruzi N, Beheshti S, Akhbari K (2018) Taking organic reac-
tions over metal-organic frameworks as heterogeneous catalysis.
Micropor Mesopor Mater 256:111–127
40. Nguyen LTL, Nguyen TT, Nguyen KD, Phan NTS (2012)
Metal–organic framework MOF-199 as an eꢂcient heteroge-
neous catalyst for the aza-Michael reaction. Appl Catal A Gen
425–426:44–52
2
2
3
8. Rostamnia S, Mohsenzad F (2018) Nanoarchitecturing of open
metal site Cr-MOFs for oxodiperoxo molybdenum complexes
41. Kim J, Kim SH, Yang ST, Yang ST, Ahn WS (2012) Bench-scale
preparation of Cu3(BTC)2 by ethanol reꢃux: Synthesis optimi-
zation and adsorption/catalytic applications. Micropor Mesopor
Mater 161:48–55
[
MoO(O2)2@En/MIL-100(Cr)] as promising and bifunctional
catalyst for selective thioether oxidation. Mol Catal 445:12–20
9. Rostamnia S, Alamgholiloo H, Jafari M (2018) Ethylene diamine
post-synthesis modiꢁcation on open metal site Cr-MOF to access
eꢂcient bifunctional catalyst for the Hantzsch condensation reac-
tion. Appl Organomet Chem 32:e4370
42. Douraki SM, Massah AR (2015) The zeolite ZSM-5-SO3H
catalyzed aza-Michael addition of amines and sulfonamides to
electron-deꢁcient alkenes under solvent-free conditions. Indian J
Chem 54B:1346–1349
0. Alamgholiloo H, Zhang S, Ahadi A, Rostamnia S, Banaei R, Li Z,
Liu X, Shokouhimehr M (2019) Synthesis of bimetallic 4-PySI-
Pd@Cu(BDC) via open metal site Cu-MOF: Eꢀect of metal and
support of Pd@Cu-MOFs in H2 generation from formic acid. Mol
Catal 467:30–37
43. Dai L, Zhang Y, Dou Q, Wang X, Chen Y (2013) Chemo/regi-
oselective Aza-Michael additions of amines to conjugate alk-
enes catalyzed by polystyrene-supported AlCl3. Tetrahedron
69:1712–1716
3
1. Panahi P, Nouruzi N, Doustkhah E, Mohtasham H, Ahadi A, Ghi-
asi-Moaser A, Rostamnia S, Mahmoudi G, Khataeed A (2019)
Zirconium based porous coordination polymer (PCP) bearing
organocatalytic ligand: A promising dual catalytic center for
ultrasonic heterocycle synthesis. Ultrason Sonchem 58:104653
Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional aꢂliations.
1
3