protonation of NH by the BrÔnsted acid sites. NH adsorbed
amine products and therefore provided no futher insight into
the reaction.
3
3
on H-RHO gave a band at d \ [358.5, which is assigned to
ammonium cations involved in hydrogen bonding to adjacent
ammonium cations.27 This explanation Ðts in with the prox-
imity of BrÔnsted acid sites relative to each other, in
H-SAPO-34 the ammonium cations are isolated whereas in
H-RHO there are eight BrÔnsted acid sites per unit cell that
can facilitate the interaction between neighbouring ammon-
ium species.
References
1
2
3
4
5
L. A. Hamilton, US Pat. 3 384 667, 1968.
F. J. Weigert, US Pat. 4 254 061, 1981.
A. J. Tompsett, Eur. Pat. 82 304 482.1, 1982.
R. N. Cochran and M. Deeba, US Pat. 4 398 041, 1983.
I. Mochida, A. Yasutake, H. Fujitsu and K. Takeshita, J. Catal.,
1
983, 82, 313.
Previous 2H NMR studies of the three methylamines
adsorbed on zeolite Y and ZK-5 (which has a similar structure
to RHO) by Kustanovich et al.28 postulated that tri-, bi- and
mono-pod structures were formed by MMA, DMA and TMA,
respectively, when interacting with BrÔnsted acid sites. The
structures are formed by hydrogen bonds between the
BrÔnsted acid site and the electron lone pair on the N atom of
the amine and by the protons directly bonded to the N atom
interacting with bridging oxygens in the catalyst framework.
The broad nature of the 15N resonance provides further evi-
dence for these surface structures; MMA contributes the most
to the broad signal being the most abundant product and is
also the most rigidly bound of the three methylamines accord-
ing to the above model. For the tetramethylammonium cation
it was observed that the 13C resonance was signiÐcantly
sharper compared with the product species, this can be
explained in terms of the mobility of the methyl groups and of
the molecule as a whole. MMA and DMA have NwH bonds,
the protons of which can form hydrogen bonds with the
framework oxygen atoms which then restricts their motion.
TMA and the tetramethylammonium cation on the other
hand do not have any NwH bonds so these two species can
rotate freely about the N atomwBrÔnsted acid site hydrogen
bond.
6
7
Y. Ashina, T. Fujita, M. Fukatsu, K. Niwa and J. Yagi, Stud.
Surf. Sci. Catal., 1986, 28, 779.
M. Keane, G. C. Sonnichsen, L. Abrams, D. R. Corbin, T. E. Gier
and R. D. Shannon, Appl. Catal., 1987, 32, 361.
8
9
C. Herrmann, F. Fetting and C. Plog, Appl. Catal., 1988, 39, 213.
L. Abrams, M. Keane and G. C. Sonnichsen, J. Catal., 1989, 115,
4
10.
A. Martin, H. Berndt, U. Wolf and B. Lu
4, 359.
1
0
1
cke, Catal. L ett., 1992,
1
1
F. J. Weigert, J. Catal., 1987, 103, 20.
12 K. Segawa and H. Tachibana, J. Catal., 1991, 131, 482.
13 K. Segawa and H. Tachibana, in Proc. Int. Con. Catal., Budapest,
1
992, ed. L. Guczi, F. Solymozi and P. Te te nyi, Elsevier,
Amsterdam/New York, 1993.
1
4
5
R. D. Shannon, M. Keane, L. Abrams, R. H. Staley, T. E. Gier,
D. R. Corbin and G. C. Sonnichsen, J. Catal., 1988, 113, 367.
H. E. Bergna, M. Keane, D. H. Ralston, G. C. Sonnichsen, L.
Abrams and R. D. Shannon, J. Catal., 1989, 115, 148.
1
16 D. R. Corbin, M. Keane, L. Abrams, R. D. Farlee, P. E. Bierstedt
and T. Bein, J. Catal., 1990, 124, 268.
1
1
7
8
L. Abrams, D. R. Corbin and M. Keane, J. Catal., 1990, 126, 610.
R. D. Shannon, M. Keane, L. Abrams, R. H. Staley, T. E. Gier,
D. R. Corbin and G. C. Sonnichsen, J. Catal., 1988, 114, 8.
R. D. Shannon, M. Keane, L. Abrams, R. H. Staley, T. E. Gier,
D. R. Corbin and G. C. Sonnichsen, J. Catal., 1989, 115, 79.
1
9
20 F. Fetting and U. Dingerdissen, Chem. Eng. T echnol., 1992, 15,
02.
2
2
1
M. Subrahmanyam, S. J. Kulkarni and A. V. Rama Roa, J. Chem.
Soc., Chem. Commun., 1992, 607.
Conclusions
22 H. Ernst and H. Pfeifer, J. Catal., 1992, 136, 202.
2
3
R. D. Shannon, R. H. Stanley, A. J. Vega, R. X. Fischer, W. H.
At around 240 ¡C zeolite H-RHO and H-SAPO-34 convert
methanol and ammonia to methylamines under static batch
conditions using a 1 : 1 ratio of the two reactants, in addition
both catalysts form the tetramethylammonium cation but
only H-RHO forms the monomethylammonium cation. At
higher temperatures amines produced by H-RHO are cracked
and the reactive species give hydrocarbons and ammonia.
While 13C MAS NMR proved to be a good method for
following the reaction, 15N MAS NMR of the products gave
rise to a single broad band containing all resonances of the
Baur and A. Aurroux, J. Phys. Chem., 1989, 93, 2019.
24 A. J. Vega and Z. Luz, Zeolites, 1988, 8, 19.
2
5
R. H. Meinhold, L. M. Parker and D. M. Bibby, Zeolites, 1986, 6,
4
91.
2
6
7
H-M. Kao and C. P. Grey, J. Phys. Chem., 1996, 100, 5105.
W. L. Earl, P. O. Fritz, A. A. V. Gibson and J. H. Lunsford, J.
Phys. Chem., 1987, 91, 2091.
2
28 I. Kustanovich, Z. Luz, S. Vega and A. J. Vega, J. Phys. Chem.,
1990, 94, 3183.
Paper 7/09294F; Received 24th December, 1997
1122
J. Chem. Soc., Faraday T rans., 1998, V ol. 94