R. Häggblad et al. / Journal of Catalysis 258 (2008) 345–355
355
5. Conclusion
[5] A.P.V. Soares, M.F. Portela, A. Kiennemann, J.M.M. Millet, React. Kinet. Catal.
Lett. 75 (2002) 13.
[6] A.P.V. Soares, M.F. Portela, A. Kiennemann, L. Hilaire, Chem. Eng. Sci. 58 (2003)
1315.
Our findings indicate that catalysts prepared in the form of
phase pure triclinic Fe1−xAlxVO4 phases with 0 ꢀ x ꢀ 1 were ac-
tive and selective for methanol oxidation to produce formaldehyde.
When submitted to methanol oxidation, all of the triclinic phases
initially showed very similar activation behaviour extending for at
least 16 h of operation. During this period, both the conversion
and especially the selectivity to formaldehyde increased with time
on stream. The extended behaviour indicates restructuring of the
surface and the near-surface region to form a surface structure dif-
ferent from that of the bulk. Supporting information provided by
HRTEM imaging showed growth of an apparently amorphous layer
at the surface of the bulk stable AlVO4.
Elemental analysis by XPS showed no significant difference in
the metal composition between the freshly prepared samples and
the corresponding samples used in methanol oxidation. Moreover,
except for some depletion of Fe, the V/(Fe + Al) atomic ratios de-
termined by XPS agreed quite well with the corresponding bulk
ratios.
Compared with an industrial type MoO3/Fe2(MoO4)3 catalyst,
the vanadates were more active per unit surface area and less
selective to formaldehyde at high methanol conversion (∼90% vs
93%). Compared with pure vanadia, the vanadates were less active
per vanadium atom and per unit surface area, but more selective
to formaldehyde (∼90% vs 87%). Substituting Al for Fe gave slightly
improved activity but had no notable effect on the selectivity to
formaldehyde. The activity data indicate that the electron density
on a bridging V–O–M (M = V, Al, Fe) oxygen determined the ac-
tivity, with increasing activity expressed per V atom decreasing
the electronegativity of the M metal. The improved selectivity to
formaldehyde of the vanadates compared with pure vanadia sug-
gests that the Al and Fe in the structure create isolation of V and
decrease the number of less-selective V–O–V sites.
[7] N. Burriesci, F. Garbassi, M. Petrera, G. Petrini, N. Pernicone, in: B. Delmon, G.F.
Froment (Eds.), Catalyst Deactivation, Elsevier, Amsterdam, 1980, pp. 115–126.
[8] B.I. Popov, V.N. Bibin, G.K. Boreskov, Kinet. Katal. (Eng. Transl.) 17 (1976) 322.
[9] I.E. Wachs, L.E. Briand, US Patent 7 193 117 B2, 2007, to Lehigh University.
[10] P. Forzatti, E. Tronconi, A.S. Elmi, G. Busca, Appl. Catal. A 157 (1997) 387.
[11] T. Kim, I.E. Wachs, J. Catal. 255 (2008) 197.
[12] G. Deo, I.E. Wachs, J. Catal. 146 (1994) 323.
[13] S. Lim, G.L. Haller, Appl. Catal. A 188 (1999) 277.
[14] R. Malin´ ski, React. Kinet. Catal. Lett. 5 (1976) 265.
[15] R. Malin´ ski, M. Akimoto, E. Echigoya, J. Catal. 44 (1976) 101.
[16] L.E. Briand, J.-M. Jehng, L. Cornaglia, A.M. Hirt, I.E. Wachs, Catal. Today 78
(2003) 257.
[17] G.V. Isaguliants, I.P. Belomestnykh, Catal. Today 100 (2005) 441.
[18] A. Bielan´ ski, J. Haber, Oxygen in Catalysis, Dekker, New York, 1991.
[19] S. Denis, E. Baudrin, M. Touboul, J.-M. Tarascon, J. Electrochem. Soc. 144 (1997)
4099.
[20] B. Robertson, E. Kostiner, J. Solid State Chem. 4 (1972) 29.
[21] E. Arisi, S.A. Palomares Sánchez, F. Leccabue, B.E. Watts, G. Bocelli, F. Calderón,
G. Calestani, L. Righi, J. Mater. Sci. 39 (2004) 2107.
[22] B.G. Hyde, S. Andersson, Inorganic Crystal Structures, Wiley, New York, 1988.
[23] S. Denis, R. Dedryvère, E. Baudrin, S. Laruelle, M. Touboul, J. Olivier-Fourcade,
J.C. Jumas, J.M. Tarascon, Chem. Mater. 12 (2000) 3733.
[24] E.J. Baran, I.L. Botto, Monatsh. Chem. 108 (1977) 311.
[25] J. Nilsson, A.R. Landa-Cánovas, S. Hansen, A. Andersson, J. Catal. 186 (1999) 442.
[26] E. Baba Ali, J.C. Bernède, A. Barreau, Mater. Chem. Phys. 63 (2000) 208.
[27] K. Asami, K. Hashimoto, Corros. Sci. 17 (1977) 559.
[28] S.L.T. Andersson, S. Järås, J. Catal. 64 (1980) 51.
[29] L. O’Mahony, T. Curtin, D. Zemlyanov, M. Mihov, B.K. Hodnett, J. Catal. 227
(2004) 270.
[30] J. Wong, F.W. Lytle, R.P. Messmer, D.H. Maylotte, Phys. Rev. B 30 (1984) 5596.
[31] M. Wakihara, Y. Shimizu, T. Katsura, J. Solid State Chem. 3 (1971) 478.
[32] D.B. Rogers, R.J. Arnott, A. Wold, J.B. Goodenough, J. Phys. Chem. Solids 24
(1963) 347.
[33] V. Nivoix, B. Gillot, Solid State Ionics 111 (1998) 17.
[34] B. Gillot, V. Nivoix, Mater. Res. Bull. 34 (1999) 1735.
[35] V. Nivoix, B. Gillot, Chem. Mater. 12 (2000) 2971.
[36] V. Nivoix, B. Gillot, Mater. Chem. Phys. 63 (2000) 24.
[37] B. Gillot, M. Nohair, Phys. Status Solidi A 176 (1999) 1047.
[38] M. Nohair, P. Perriat, B. Domenichini, B. Gillot, Thermochim. Acta 244 (1994)
223.
[39] R.D. Shannon, Acta Crystallogr. Sect. A 32 (1976) 751.
[40] C.-B. Wang, Y. Cai, I.E. Wachs, Langmuir 15 (1999) 1223.
[41] L.E. Briand, A.M. Hirt, I.E. Wachs, J. Catal. 202 (2001) 268.
[42] M. Bowker, R. Holroyd, M. House, R. Bracey, C. Bamroongwongdee, M. Shannon,
A. Carley, Top. Catal. 48 (2008) 158.
[43] M.P. House, A.F. Carley, R. Echeverria-Valda, M. Bowker, J. Phys. Chem. C 112
(2008) 4333.
[44] C.J. Machiels, A.W. Sleight, J. Catal. 76 (1982) 238.
[45] L.J. Burcham, I.E. Wachs, Catal. Today 49 (1999) 467.
[46] L.E. Briand, W.E. Farneth, I.E. Wachs, Catal. Today 62 (2000) 219.
[47] X. Gao, I.E. Wachs, Top. Catal. 18 (2002) 243.
[48] B.M. Weckhuysen, D.E. Keller, Catal. Today 78 (2003) 25.
[49] M. Seman, J.N. Kondo, K. Domen, R. Radhakrishnan, S.T. Oyama, J. Phys. Chem.
B 106 (2002) 12965.
[50] W.L. Holstein, C.J. Machiels, J. Catal. 162 (1996) 118.
[51] J. Döbler, M. Pritzsche, J. Sauer, J. Am. Chem. Soc. 127 (2005) 10861.
[52] A. Goodrow, A.T. Bell, J. Phys. Chem. C 111 (2007) 14753.
[53] F. Roozeboom, P.D. Cordingley, P.J. Gellings, J. Catal. 68 (1981) 464.
[54] G.D. Kolovertnov, G.K. Boreskov, V.A. Dzis’ko, B.I. Popov, D.V. Tarasova, G.G. Bel-
ugina, Kinet. Katal. (Engl. Transl.) 6 (1965) 1052.
XRD and XANES showed that the triclinic FeVO4 phase was un-
stable under the reaction conditions and formed a cationvacant
spinel-type Fe1.5 V1.5 O4 phase. Substituting Al for Fe in the catalyst
gave more stable bulk structures.
Acknowledgments
The Swedish Research Council (VR) is acknowledged for finan-
cial support.
References
[1] G. Reuss, W. Disteldorf, A.O. Gamer, A. Hilt, in: Ullmann’s Encyclopedia of In-
dustrial Chemistry, vol. A11, seventh ed., Wiley–VCH, Weinheim, 2008, pp. 619–
652.
[2] B. Crichton in: Informally Speaking (Newsletter from Perstorp Formox,
[3] A.R. Chauvel, P.R. Courty, R. Maux, C. Petitpas, Hydrocarbon Process. 52 (9)
(1973) 179.
[4] A. Andersson, M. Hernelind, O. Augustsson, Catal. Today 112 (2006) 40.