FULL PAPER
[6] a) S. Burck, D. Gudat, M. Nieger, Angew. Chem. Int. Ed. 2004, [22]
43, 4801–4804; Angew. Chem. 2004, 116, 4905; b) S. Burck, D.
G. Bellucci, G. Berti, R. Bianchini, L. Orsini, Tetrahedron Lett.
1982, 23, 3635–3638.
Gudat, M. Nieger, Angew. Chem. Int. Ed. 2007, 46, 2919–2922;
Angew. Chem. 2007, 119, 2977; c) S. Burck, I. Hajdok, M.
Nieger, D. Bubrin, S. Schulze, D. Gudat, Z. Naturforsch. B
2009, 64, 63–72; d) D. Förster, M. Nieger, D. Gudat, Organo-
metallics 2011, 30, 2628–2631; e) D. Förster, I. Hartenbach, M.
Nieger, D. Gudat, Z. Naturforsch. B 2012, 67, 765–773.
[7] a) D. Gudat, A. Haghverdi, M. Nieger, Angew. Chem. Int. Ed.
2000, 39, 3084–3086; Angew. Chem. 2000, 112, 3211; b) S.
Burck, D. Gudat, M. Nieger, W.-W. Du Mont, J. Am. Chem.
Soc. 2006, 128, 3946–3955.
[23]
The formation of a small amount of 3b from PBr3 and 1b in the
presence of cyclohexane is attributable to the base properties of
the diazadiene itself, which are enhanced by the N-alkyl groups.
A realistic analysis of further reaction steps must account for
a possible role of tertiary ammonium ions as potential acidic
catalysts and the neutralisation of HCl to give solid ammonium
salts, which is beyond the scope of the chosen computational
model.
[24]
[25]
Y. Segawa, Y. Suzuki, M. Yamashita, K. Nozaki, J. Am. Chem.
Soc. 2008, 130, 16069–16079.
G. Schmid, J. Schulze, Chem. Ber. 1977, 110, 2744–2750.
[8] a) C. C. Chong, H. Hirao, R. Kinjo, Angew. Chem. Int. Ed.
2014, 53, 3342–3346; Angew. Chem. 2014, 126, 3410; C. C.
Chong, H. Hirao, R. Kinjo, Angew. Chem. Int. Ed. 2015, 54,
190–194; Angew. Chem. 2015, 127, 192.
[26]
[27]
Even if a spontaneous loss of HCl in a similar compound has
been reported,[12] this step is likely to proceed as base-promoted
reaction, and a further mechanistic elucidation was considered
to be beyond the scope of this work.
a) H. A. Jenkins, C. L. Dumaresque, D. Vidovic, J. A. C. Clyb-
urne, Can. J. Chem. 2002, 80, 1398–1403; b) L. Weber, I.
Domke, J. Kahlert, H.-G. Stammler, Eur. J. Inorg. Chem. 2006,
3419–3424; c) K. V. Vasudevan, M. Findlater, A. H. Cowley,
Chem. Commun. 2008, 1918–1920.
[9] S. Burck, D. Förster, D. Gudat, Chem. Commun. 2006, 2810–
2812.
[10] L. Weber, E. Dobbert, H. G. Stammler, B. Neumann, R. Boese,
D. Bläser, Eur. J. Inorg. Chem. 1998, 1145–1152.
[11] A. M. Kibardin, I. A. Litvinov, V. A. Naumov, Yu. T. Struch-
kov, T. V. Gryaznova, Yu. B. Mikhailov, A. N. Pudovik, Dokl.
Akad. Nauk SSSR 1988, 298, 369–73.
[12] A. Hinchliffe, F. S. Mair, E. J. L. McInnes, R. G. Pritchard,
J. E. Warren, Dalton Trans. 2008, 222–233.
[13] G. Reeske, A. H. Cowley, Inorg. Chem. 2007, 46, 1426–1430.
[14] J. W. Dube, G. J. Farrar, E. L. Norton, K. L. Szekely, B. F. T.
Cooper, C. L. B. MacDonald, Organometallics 2009, 28, 4377–
4384.
[28]
[29]
[30]
W. B. McCormack, U. S. Patents 2663736 and 2663737, 1953.
H. tom Dieck, M. Soboda, T. Greiser, Z. Naturforsch. B 1981,
36, 823–832.
[31] W. Gee, R. A. Shaw, B. C. Smith, J. Chem. Soc. 1964, 4180–
4183.
[15] H. H. Karsch, P. A. Schlüter, F. Bienlein, M. Herker, E. Witt,
A. Sladek, M. Heckel, Z. Anorg. Allg. Chem. 1998, 624, 295–
309.
[32] W. Gerrard, M. F. Lappert, C. A. Pearce, J. Chem. Soc. 1957,
381–386.
[33] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112.
[34] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T.
Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morok-
uma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzew-
ski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V.
Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.
Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, re-
vision E.01, Gaussian, Inc., Wallingford, CT, 2004.
[35] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7,
3297.
[16] L. Weber, J. Förster, H.-G. Stammler, B. Neumann, Eur. J. In-
org. Chem. 2006, 5048–5056.
[17] A. M. Kibardin, A. N. Pudovik, Russ. J. Gen. Chem. 1993, 63,
1687–1694.
[18] The signals of 9 were identified by analysis of multinuclear 1D
(1H, 31P) and 2D (1H,31P HMQC, 1H,13C HSQC/HMBC,
1H,1H COSY/NOESY) NMR spectra of a reaction mixture in
C6D6. Structural assignment is based on the following data:
31P NMR: δ = 165.3 (d, JPH = 22 Hz) ppm. 1H NMR: δ = 6.83
3
(d, JPH = 22 Hz, 1 H, =CH), 2.62 (q, JHH = 7 Hz, 4 H,
3
NCH2), 0.71 (t, JHH = 7 Hz, 6 H, CH3) ppm. 13C NMR (the
signal of the Br-substituted carbon atom was not detected due
to insufficient signal/noise ratio): δ = 144.3 (d, JPC = 105 Hz,
=CH), 45.8 (d, JPC = 9 Hz, NCH2), 14.0 (CH3) ppm. In some
reactions, a mixture of BrnP{C(Br)=CHNEt2}3–n (n = 0–2) was
formed. Of these, also the signals of the disubstitution product
1
(with n = 1) could be identified: H NMR: δ = 7.20 (d, JPH
=
3
11 Hz, 2 H, =CH), 2.86 (q, JHH = 7 Hz, 8 H, NCH2), 0.79 (t,
3JHH = 7 Hz, 12 H, CH3) ppm. 13C NMR: δ = 145.1 (d, JPC
=
56 Hz, =CH), 83.7 (d, JPC = 54 Hz, =CH), 46.3 (d, JPC = 9 Hz,
NCH2), 14.2 (CH3) ppm. 31P NMR: δ = 109.1 (d, JPH = 11 Hz)
ppm.
[36] D. Feller, J. Comput. Chem. 1996, 17, 1571.
[19] S. Burck, D. Gudat, M. Nieger, Z. Benko, L. Nyulaszi, D. Szie-
berth, Z. Anorg. Allg. Chem. 2009, 635, 245–252.
[20] S. Burck, D. Gudat, K. Nättinen, M. Nieger, M. Niemeyer, D.
Schmid, Eur. J. Inorg. Chem. 2007, 5112–5119.
[37] K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Guru-
moorthi, J. Chase, J. Li, T. L. Windus, J. Chem. Inf. Model.
[38] E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold,
NBO, version 3.1.
[39] G. Schaftenaar, J. H. Noordik, J. Comput.-Aided Mol. Des.
2000, 14, 123.
[21] As had been noted by Macdonald et al.,[14] this reaction was
rather slow. This is probably due to the formation of a spectro-
scopically detectable transient intermediate (31P NMR: δ =
199.1 ppm) of unknown structure, which was eventually con-
verted into 1b.
Received: August 2, 2015
Published Online: September 14, 2015
Eur. J. Inorg. Chem. 2015, 4819–4828
4828
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim