M. Calm e` s et al. / Tetrahedron: Asymmetry 12 (2001) 49–52
51
Scheme 2. Enantioselective protonation of a-amino acid derivatives with (R)-pantolactone.
Table 2. Enantioselective protonation of amino acid derivatives with (R)-pantolactone
Entry
R1
R2
Base7a,
*
Additive
Config.
% e.e.
1
2
3
4
5
6
7
8
Me
Me
Me
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
H
LDA
*
*
(R)
(S)
(S)
(R)
(R)
(R)
(S)
(S)
18
34
76
12
20
74
38
54
LHMDS
LHMDS
LDA
LHMDS
LHMDS
LDA
LiCl (3 equiv.)
*
*
LiCl (3 equiv.)
*
LiCl (3 equiv.)
CH Ph
CH Ph
2
H
LHMDS
2
*
Enolate formation at −40 to 0°C; 2 h.
tioselective protonation at −85°C gave the highest enan-
tiomeric excess. No improvement in stereoselectivity
resulted from the use of the more sterically hindered
tert-butyl ester 1b (entries 18–21).
Soc. Chim. Fr. II 1982, 75–83; (d) Duhamel, L.; Fouquay,
S.; Plaquevent, J. C. Tetrahedron Lett. 1986, 27, 4975–
4978.
3. Vedejs, E.; Kruger, A. W.; Suna, E. J. Org. Chem. 1999,
6
4, 7863–7870.
The same reaction with two other racemic amino acids
was then studied (Scheme 2 and Table 2). In all cases as
above, the best results were observed by associating
LiCl with LHMDS and using the optimal temperature
to form the enolate (Table 1, entry 12 and Table 2,
entries 3 and 6).
4
. (a) Calm e` s, M.; Daunis, J.; Jacquier, R.; Mai, N.; Natt,
F. Tetrahedron Lett. 1996, 37, 379–380; (b) Calm e` s, M.;
Daunis, J.; Mai, N. Tetrahedron: Asymmetry 1997, 8,
1
641–1648; (c) Calm e` s, M.; Escale, F. Tetrahedron:
Asymmetry 1998, 9, 2845–2850.
. Matsumoto, K.; Ohta, H. Tetrahedron Lett. 1991, 32,
5
4
729–4732.
. (a) Gerlach, U.; H u¨ nig, S. Angew. Chem., Int. Ed. Engl.
987, 26, 1283–1285; (b) Gerlach, U.; Haubenreich, T.;
However, it can be noted that in the case of phenylglycine
6
(
Table 2, entry 6), the configuration of the newly gener-
1
ated stereogenic center was opposite to that obtained
with alkyl amino acids (Table 1, entry 12 and Table 2,
entry 3). The importance of phenyl groups in the amino
acid derivatives was also demonstrated by using a ben-
zaldehyde Schiff base (Table 2, entries 7 and 8) instead
of benzophenone (Table 1, entries 6, 8, 12 and 13) since
in the benzaldehyde case neither of the bases used (LDA
or LHMDS) caused any inversion of configuration.
H u¨ nig, S. Chem. Ber. 1994, 127, 1981–1988; (c) Cavelier,
F.; Gomez, S.; Jacquier, R.; Verducci, J. Tetrahedron:
Asymmetry 1993, 4, 2501–2505.
. (a) Thermodynamic conditions: Enolization by addition
of the ester 1 to a pre-cooled solution of the base (no
self-condensation is observed); (b) Kinetic conditions:
enolization by addition of the base to a pre-cooled solu-
tion of the ester 1, see Ref. 7.
7
8
. (a) House, H. O.; Trost, B. M. J. Org. Chem. 1965, 30,
In conclusion, we have shown that (R)-pantolactone
can act as a proton source for the enantioselective
protonation of enolate Schiff bases. By a suitable
choice of the various parameters, either (R)- or (S)-a-
amino acids can be selectively obtained with modest to
high enantiomeric excess.
1341–1348; (b) Ireland, R. E.; Mueller, R. H.; Willard, A.
K. J. Am. Chem. Soc. 1976, 98, 2868; (c) Moreland, D.
W.; Dauben, W. G. J. Am. Chem. Soc. 1985, 107, 2264–
2
Org. Chem. 1991, 56, 650–657; (e) Alvarrez-Ibarra, C.;
Csak y¨ , A. G.; Maroto, R.; Quiroga, M. L. J. Org. Chem.
273; (d) Ireland, R. E.; Wipf, P.; Armstrong, J. D. J.
1
995, 60, 7934–7940.
. (a) Solladi e´ -Cavallo, A.; Csaky, A. G. J. Org. Chem.
994, 59, 2585–2589; (b) Vedejs, E.; Lee, N. J. Am. Chem.
Soc. 1995, 117, 891–900.
10. (a) Laube, T.; Dunitz, J. D.; Seebach, D. Helv. Chim.
Acta 1985, 68, 1373–1393; (b) Aebi, J. D.; Seebach, D.
Helv. Chim. Acta 1985, 68, 1507–1518; (c) Seebach, D.
Angew. Chem., Int. Ed. Engl. 1988, 27, 1624–1654.
9
References
1
1
. Fehr, C. Angew. Chem., Int. Ed. Engl. 1996, 35, 2566–
587.
. (a) Duhamel, L. C. R. Acad. Sci. 1976, 282c, 125; (b)
Duhamel, L.; Plaquevent, J. C. J. Am. Chem. Soc. 1978,
2
2
1
00, 7415–7416; (c) Duhamel, L.; Plaquevent, J. C. Bull.
.