LETTER
Stereoselective Allylic Alkylation of Lithium Enolates
2971
product 15. Thus, the p-complex 19 forms initially from Acknowledgment
the substrate (Z)-12. It is converted, via the s-intermediate
This work was supported by the Deutsche Forschungsgemeinschaft
and the Fonds der Chemischen Industrie. We would like to thank
Prof. Dr. J. Pietruszka, Forschungszentrum Jülich, for chiral HPLC
2
0 and its rotamer 21, into the p-complex 22, which is
attacked by the enolate 13 from the face opposite to the
transition metal. The overall stereochemical outcome re- measurements. Chiral GC measurements were performed by Bayer
sults from two substitutions, each of them occurring under Industry Services. This work is part of the dissertation of T. Meier,
University of Düsseldorf, 2005.
inversion, and a p-s-p process that converts the Z- into
the E-configured double bond.
References
Ph
Ph
PdLn
(
1) (a) Trost, B. M. Tetrahedron 1977, 33, 2615. (b) Tsuji, J.
Organic Synthesis with Palladium Compounds; Springer:
New York, 1980. (c) Trost, B. M. Acc. Chem. Res. 1980, 13,
PdLn
AcO
p
s
(Z)-12
LnPd
–
MEMO
MEMO
20
385. (d) Trost, B. M. Pure Appl. Chem. 1981, 53, 2357.
19
(
e) Tsuji, J. Pure Appl. Chem. 1982, 54, 197. (f) Godleski,
A. In Comprehensive Organic Synthesis, Vol. 4; Trost, B.
M., Ed.; Pergamon: Oxford, 1991, 585.
2) For reviews, see: (a) Reiser, O. Angew. Chem., Int. Ed. Engl.
rotation
OMEM
(
OMEM
1993, 32, 547; Angew. Chem. 1993, 105, 576. (b)Williams,
p
s
13
Ph
Ph
J. M. J. Synlett 1996, 705. (c) Trost, B. M.; Van Vranken, D.
L. Chem. Rev. 1996, 96, 395. (d) Helmchen, G. J.
Organomet. Chem. 1999, 576, 203. (e) Helmchen, G.;
Pfaltz, A. Acc. Chem. Res. 2000, 33, 336. (f) Trost, B. M.;
Crawley, M. L. Chem. Rev. 2003, 103, 2921. (g) Trost, B.
M. J. Org. Chem. 2004, 69, 5813.
1
5
–
PdLn
PdLn
PdLn
22
21
OMEM
PdLn
AcO
13
Ph
(E)-17
18
(3) Heathcock, C. H. In Modern Synthetic Methods 1992;
Scheffold, R., Ed.; VHCA, VCH: Basel, Weinheim, 1992, 1;
and references therein.
4) (a) Fiaud, J.-C.; Malleron, J.-L. J. Chem. Soc., Chem.
Commun. 1981, 1159. (b) Åkermark, B.; Jutand, A. J.
Organomet. Chem. 1981, 217, C41. (c) Negishi, E.;
Matsushita, H.; Chatterjee, S.; John, R. A. J. Org. Chem.
1982, 47, 3188. (d) Trost, B. M.; Keinan, E. Tetrahedron
Lett. 1980, 21, 2591. (e) Trost, B. M.; Self, C. R. J. Org.
Chem. 1984, 49, 468.
–
PdLn
–
PdLn
23
(
Scheme 7
On the other hand, the formation of ketone 18 from the
lithium enolate 13 and the substrate (E)-17 is plausibly
explained by a double inversion, first, in the formation of
the p-allyl palladium complex 23 and, second, in the
approach of the nucleophilic enolate 13. The reaction fol-
lows this ‘simple’ path, because, in the E-configured sub-
strate 17, there is no ‘need’ for a thermodynamically
controlled Z-to-E interconversion.
(
5) (a) Review: Kazmaier, U. Curr. Org. Chem. 2003, 7, 317.
(
1
b) Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc. 1999,
21, 6759. (c) Braun, M.; Laicher, F.; Meier, T. Angew.
Chem. Int. Ed. 2000, 39, 3494; Angew. Chem. 2000, 112,
637. (d) You, S.-L.; Hou, X.-L.; Dai, L.-X.; Zhu, X.-Z.
3
Org. Lett. 2001, 3, 149.
(
6) (a) Kazmaier, U.; Zumpe, F. L. Angew. Chem. Int. Ed. 1999,
The configurations of the ketones 15 and 18 were as-
signed after ozonolysis that leads to the enantiomeric keto
aldehydes (R)-16 and (S)-16, respectively, whose absolute
38, 1468; Angew. Chem. 1999, 111, 1572. (b) Weiß, T. D.;
Helmchen, G.; Kazmaier, U. Chem. Commun. 2002, 1270.
7) (a) Bartels, B.; García-Yebra, C.; Helmchen, G. Eur. J. Org.
Chem. 2003, 1097. (b) Peña, D.; Minnaard, A. J.; de Vries,
A. H. M.; de Vries, J. G.; Feringa, B. L. Org. Lett. 2003, 5,
(
2
1
configuration is known, so that the assignment is possi-
ble by comparison of the sign of their optical rotations.
Thus, it has been shown that ketone-derived lithium eno-
lates in the presence of lithium chloride do not undergo a
precoordination to the transition metal in p-allyl palladi-
um complexes. They rather approach the p-allyl system
from the face opposite to the noble metal. Thus, pre-
formed lithium enolates follow the pathway of stabilized
carbanions in the allylic substitution.
4
75.
8) Takaya, H.; Akutagawa, S.; Noyori, R. Org. Synth. 1988, 67,
0.
9) Takaya, H.; Mashima, K.; Koyano, K. J. Org. Chem. 1986,
1, 629.
(
(
2
5
(
10) Seebach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624;
Angew. Chem. 1988, 100, 1685.
(11) Lloyd-Jones, G. C.; Stephen, S. C.; Fairlamb, I. J. S.;
Martorell, A.; Dominguez, B.; Tomlin, P. M.; Murray, M.;
Fernandez, J. M.; Jeffery, J. C.; Riis-Johannessen, T.;
Guerziz, T. Pure Appl. Chem. 2004, 76, 589.
(12) Enders, D. In Asymmetric Synthesis, Part B, Vol. 2;
Morrison, J. D., Ed.; Academic Press: New York, 1984,
Chap. 4.
In summary, it has been demonstrated that monoallylation
reactions of simple cyclic ketones are feasible provided
that the appropriate conditions are chosen. Aside from the
workhorse ligand’ BINAP at the transition metal, the use
of lithium enolates in the presence of lithium chloride are
keys to the success. It becomes more and more evident
that allyl palladium and preformed enolate chemistry are
indeed compatible.
‘
2
2
(13) Imai, M.; Hagihara, A.; Kawasaki, H.; Manabe, K.; Koga, K.
Tetrahedron 2000, 56, 179.
Synlett 2005, No. 19, 2968–2972 © Thieme Stuttgart · New York