9
0
Q. Fu et al.rChemical Physics Letters 301 (1999) 87–90
a-C N and b-C N may exist in the CN films.
multaneously using a high voltage electrodeposition
technique in a suitable liquid phase system. Our
present results demonstrate exciting prospects for
this further research into simple but effective tech-
nique.
3
4
3
4
x
Accordingly, the deposition mechanism may be in-
ferred as follows: in the beginning, the acetonitrile
molecules are absorbed on the substrates randomly.
When high voltages are applied to the substrates the
absorbed molecules become polarized because of the
large dielectric constant ´ Ž37.5. and dipole moment
Acknowledgements
D Ž3.92. of acetonitrile, i.e. CH CN becomes polar-
3
dq
dy
ized CH3 PPP CN . The potential direction deter-
mines the polarization direction of molecules. When
the substrate is selected as the anode, the potential
applied to the substrates is positive and then the
negative end of the polarized molecule ŽCH3
PPP CN . turns towards the surface of the sub-
This work was supported by National Science
Foundation of China.
dq
References
dy
w1x A.Y. Liu, M.L. Cohen, Science 245 Ž1989. 841.
w2x A.Y. Liu, M.L. Cohen, Phys. Rev. B 41 Ž1990. 10727.
w3x W.A. Yarbrough, R. Messier, Science 247 Ž1992. 688.
strates. If the energy reaches a certain value the C–C
bonds in the polarized acetonitrile molecules will
break first, under the high electric field, as the bond
energy of the C–C Ž347 kJrmol. is much lower than
that of the C[N Ž879 kJrmol.. Thus certain amounts
of CN species are produced near the surface of the
anode, which react on the substrate to form carbon
nitride films. On the contrary, when the substrate is
selected as the cathode, the potential applied to the
w x
4
C. Niu, Y.Z. Lu, C.M. Lieber, Science 261 1993 334.
Ž .
w5x K.M. Yu, M.L. Cohen, E.E. Haller, W.L. Hansen, A.Y. Liu,
I.C. Wu, Phys. Rev. B 49 Ž1994. 5034.
w6x Y. Chen, L.P. Guo, E.G. Wang, Philos. Mag. Lett. 75 Ž1997.
1
55.
w7x Y. Namba, J. Vac. Sci. Technol. A 10 Ž1992. 3368.
8
w x
H. Wang, M.R. Shen, Z.Y. Ning, C. Ye, C.B. Cao, H.Y.
Dang, H.S. Zhu, Appl. Phys. Lett. 69 Ž1996. 1074.
w9x T. Suzuki, Y. Manita, T. Yamazaki, S. Wada, T. Noma, J.
substrate is negative. The CH species would react
3
Mater. Sci. 30 Ž1995. 2067.
on the electrode and thus carbon films form on the
cathode.
In the vapor deposition process the formation and
excitation of the CN species play a critical role for
w10x S.E. Kwiatek, V. Desai, P.J. Moran, P.M. Natishan, J. Mater.
Sci. 32 Ž1997. 3123.
w11x G. Beamson, D. Briggs, High Resolution XPS of Organic
Polymers – The Scienta ESCA 300 Database, John Wiley,
Chichester, 1992.
w12x D. Marton, K.J. Boyd, A.H. Al-Bayati, S.S. Todorov, J.W.
Rabalais, Phys. Rev. Lett. 73 Ž1994. 118.
the N incorporation in the CN films w18,19x. Simi-
x
larly, as the specific additive species for the growth
of carbon films in the vapor phase, the formation of
w13x Y.A. Li, S. Xu, H.S. Li, W.Y. Luo, J. Mater. Sci. Lett. 17
CH species is also very important w3x. In our elec-
3
Ž
1998 31.
w14x Y. Taki, T. Kitagawa, O. Takai, Thin Solid Films 304 Ž1997.
83.
.
trodeposition process the high voltage is applied to
1
the two electrodes, and then the CN and CH species
3
w15x T.W. Scharf, H. Deng, J.A. Barnard, J. Appl. Phys. 81
can be easily formed by breaking the covalent bonds
of the organic precursors at the electrode surface
under the high electric field. For the electrochemical
reaction, the high fields at the electrode surface are
critical for many reactions which are impossible to
take place using the conventional methods at the
same temperatures w20–22x. We speculate that the
high electric field in our procedure may contribute to
fabrication of the carbon and carbon nitride networks
on the electrodes at low temperatures.
Ž1997. 5393.
w16x C. Jama, V. Rousseau, O. Dessaux, P. Goudmand, Thin
Solid Films 302 1997 58.
Ž
.
w17x Y. Chen, L.P. Guo, E.G. Wang, J. Cryst. Grow. 179 Ž1997.
5
15.
w18x F. Kokai, K. Yamamoto, Y. Koga, S. Fujiwara, R.B.
Heimann, Appl. Phys. A 66 Ž1998. 403.
w19x J. Zhao, N. Kang, J.G. Wang, R.Y. Wang, J.R. Xu, Chin.
Sci. Bull. 42 Ž1997. 1792.
w20x W.K. Hsu, J.P. Hare, M. Terrones, H.W. Kroto, D.R.M.
Watton, P.J.F. Harris, Nature 377 Ž1995. 687.
w21x W.K. Hsu, M. Terrones, J.P. Hare, H. Terrones, H.W. Kroto,
D.R.M. Watton, Chem. Phys. Lett. 262 Ž1996. 161.
w22x S.J. Hwu, H. Li, R. Mackay, Y.K. Kuo, M.J. Skove, M.
To our knowledge carbon nitride and carbon ma-
terials can only be prepared separately at higher
temperatures in different reaction systems. In this
experiment we have obtained the both materials si-
Mahapatro, C.K. Bucher, J.P. Halladay, M.W. Hayes, Chem.
Mater. 10 Ž1998. 6.