2
472 Inorganic Chemistry, Vol. 49, No. 5, 2010
Kamata et al.
for the catalytic oxygen-transfer reactions (e.g., epoxidation
and Baeyer-Villiger reaction) and the high activity correlates
9,10
well with the high Lewis acidity of metal centers.
There-
fore, the electronic and steric control of catalytically active
centers is one of the most important points in achieving the
desired chemo-, regio-, diastereo-, and stereoselectivity to-
ward products.
Polyoxometalates are early-transition-metal oxygen anion
clusters that have been applied to various fields such as
structural chemistry, analytical chemistry, surface science,
11
medicine, electrochemistry, photochemistry, and catalysis.
Polyoxometalates have the following advantages as oxida-
tion catalysts: (a) The redox and acid-base properties can be
controlled by changes in the chemical composition, (b) they
are not susceptible to oxidative and thermal degradation in
comparison with organometallic complexes, and (c) the
catalytically active sites can be designed at the atomic and/
or molecular levels. Therefore, many catalytic H O -based
Figure 1. Proposed structure of the anionic part of I.
1
3
lacunary polyoxometalates, and transition-metal-substituted
1
4
polyoxometalates have been developed.
Recently, we have reported the highly efficient epoxidation
of homoallylic and allylic alcohols and oxidation of sulfides
2
2
12
oxidations by polyoxometalates such as peroxometalates,
with H O2 catalyzed by a selenium-containing dinuclear
2
peroxotungstate, (TBA) [SeO {WO(O ) } ] (I; TBA = [(n-
2
4
2 2 2
(
10) Catalysis: An Integrated Approach to Homogeneous, Heterogeneous
þ
15
C H ) N] ; Figure 1). The nature of the heteroatoms in the
and Industrial Catalysis; Moulijn, J. A., van Leeuwen, P. W. N. M., van Santen,
R. A., Eds.; Elsevier: Amsterdam, The Netherlands, 1993.
(
Verlag: Berlin, 1983. (b) Hill, C. L.; Chrisina, C.; Prosser-McCartha, M. Coord.
Chem. Rev. 1995, 143, 407. (c) Okuhara, T.; Mizuno, N.; Misono, M. Adv. Catal.
996, 41, 113. (d) Neumann, R. Prog. Inorg. Chem. 1998, 47, 317. (e) Thematic
issue on “Polyoxometalates”: Hill, C. L. Chem. Rev. 1998, 98, 1-389. (f)
Kozhevnikov, I. V. Catalysis by Polyoxometalates; John Wiley & Sons:
Chichester, U.K., 2002. (g) Pope, M. T. In Comprehensive Coordination
Chemistry II; McCleverty, J. A., Meyer, T. J., Eds.; Elsevier Pergamon:
Amsterdam, The Netherlands, 2004; Vol. 4; p 635. (h) Hill, C. L. In Compre-
hensive Coordination Chemistry II; McCleverty, J. A., Meyer, T. J., Eds.;
Elsevier Pergamon: Amsterdam, The Netherlands, 2004; Vol. 4; p 679. (i)
Mizuno, N.; Kamata, K.; Yamaguchi, K. In Surface and Nanomolecular
Catalysis; Richards, R., Ed.; Taylor and Francis Group: New York, 2006; p
4
9 4
n-
di- and tetranuclear peroxotungstates with XO
X=Se , S , As , P , Si , etc.) was crucial in controlling
ligands
4
11) (a) Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer-
VI VI
V
V
IV
(
the Lewis acidity of the peroxotungstates, which significantly
affects their electrophilic oxygen-transfer reactivity. In this
paper, we report full details of the catalytic performance of I
for the H O -based oxidation of various organic substrates,
1
2
2
including olefins, alcohols, and amines, and investigate the
kinetic and mechanistic aspects of the I-catalyzed epoxida-
tion system.
Experimental Section
4
63. (j) Mizuno, N.; Kamata, K.; Uchida, S.; Yamaguchi, K. In Modern
Materials. Acetonitrile (Kanto Chemical) and dichloro-
methane (Kanto Chemical) were purified by The Ultimate
Heterogeneous Oxidation Catalysis; Mizuno, N., Ed.; Wiley-VCH: Weinheim,
Germany, 2009; p 185.
16
Solvent System (Glass Contour Company) prior to use. Sub-
strates were purified according to the reported procedure.
(
12) (a) Ishii, Y.; Yoshida, T.; Yamawaki, K.; Ogawa, M. J. Org. Chem.
17
1
988, 53, 5549. (b) Venturello, C.; D'Aloisio, R.; Bart, J. C. J.; Ricci, M. J. Mol.
Deuterated solvents (CD
chased from Acros and used as received. Tungstic acid (Wako
Chemical), H SeO (Kanto Chemical, 80% aqueous solution),
tetra-n-butylammonium nitrate (Wako Chemical), and H O
2
3 3 2
CN, CDCl , and D O) were pur-
Catal. 1985, 32, 107. (c) Dengel, A. C.; Griffith, W. P.; Parkin, B. C. J. Chem.
Soc., Dalton Trans. 1993, 2683. (d) Duncan, D. C.; Chambers, R. C.; Hecht, E.;
Hill, C. L. J. Am. Chem. Soc. 1995, 117, 681. (e) Kamata, K.; Yamaguchi, K.;
Hikichi, S.; Mizuno, N. Adv. Synth. Catal. 2003, 345, 1193. (f) Kamata, K.;
Yamaguchi, K.; Mizuno, N. Chem.;Eur. J. 2004, 10, 4728. (g) Kamata, K.;
Kuzuya, S.; Uehara, K.; Yamaguchi, S.; Mizuno, N. Inorg. Chem. 2007, 46, 3768.
2
4
2
(Kanto Chemical, 30% aqueous solution) were used as received.
Instruments. IR spectra were measured on a Jasco FT/IR-460
spectrometer Plus using KCl disks. Raman spectra were re-
corded on a Jasco NR-1000 spectrometer with excitation at
(
h) Br ꢀe geault, J.-M.; Vennat, M.; Salles, L.; Piquemal, J.-Y.; Mahha, Y.; Briot, E.;
Bakala, P. C.; Atlamsani, A.; Thouvenot, R. J. Mol. Catal. A: Chem. 2006, 250,
77.
13) (a) Kamata, K.; Yonehara, K.; Sumida, Y.; Yamaguchi, K.; Hikichi,
1
5
32.36 nm using a JUNO 100 green laser (Showa Optronics Co.,
(
S.; Mizuno, N. Science 2003, 300, 964. (b) Kamata, K.; Nakagawa, Y.;
Yamaguchi, K.; Mizuno, N. J. Catal. 2004, 224, 224. (c) Kamata, K.; Kotani,
M.; Yamaguchi, K.; Hikichi, S.; Mizuno, N. Chem.;Eur. J. 2007, 13, 639. (d)
Musaev, D. G.; Morokuma, K.; Geletii, Y. V.; Hill, C. L. Inorg. Chem. 2004, 43,
Ltd.). UV-vis spectra were recorded on a Jasco V-570 spectro-
meter. NMR spectra were recorded on a JEOL JNM-EX-270
1
spectrometer ( H, 270.0 MHz; C, 67.80 MHz; Se, 51.30
13
77
1
83
1
W, 11.20 MHz) by using 5 mm tubes (for H and
MHz;
7
2
702. (e) Prabhakar, R.; Morokuma, K.; Hill, C. L.; Musaev, D. G. Inorg. Chem.
006, 45, 5703. (f) Sartorel, A.; Carraro, M.; Bagno, A.; Scorrano, G.; Bonchio,
13
77
183
C) or 10 mm tubes (for Se and W). Chemical shifts (δ)
were reported in ppm downfield from SiMe
for H and C NMR spectra, Me
NMR spectra, and 2 M Na WO
4
(solvent, CD7C7l
3
)
M. Angew. Chem., Int. Ed. 2007, 46, 3255. (g) Carraro, M.; Sandei, L.; Sartorel,
A.; Scorrano, G.; Bonchio, M. Org. Lett. 2006, 8, 3671. (h) Phan, T. D.; Kinch,
M. A.; Barker, J. E.; Ren, T. Tetrahedron Lett. 2005, 46, 397. (i) Ishimoto, R.;
Kamata, K.; Mizuno, N. Angew. Chem., Int. Ed. 2009, 48, 8900.
1
13
2
Se (solvent, DMF-1d83) for Se
O) for W NMR
7
2
4
(solvent, D
2
spectra. Gas chromatography (GC) analyses were performed on
a Shimadzu GC-2014 gas chromatograph with a flame ioniza-
tion detector equipped with an InertCap 5 capillary column
(
14) (a) Neumann, R.; Gara, M. J. Am. Chem. Soc. 1995, 117, 5066. (b)
B €o sing, M.; N €o h, A.; Loose, I.; Krebs, B. J. Am. Chem. Soc. 1998, 120, 7252. (c)
Ritorto, M. D.; Anderson, T. M.; Neiwert, W. A.; Hill, C. L. Inorg. Chem. 2004,
(
internal diameter=0.25 mm; length=60 m) and a Shimadzu
4
2
3, 44. (d) Sloboda-Rozner, D.; Alsters, P. L.; Neumann, R. J. Am. Chem. Soc.
003, 125, 5280. (e) Sloboda-Rozner, D.; Witte, P.; Alsters, P. L.; Neumann, R.
Adv. Synth. Catal. 2004, 346, 339. (f) Zhang, X.; Chen, Q.; Duncan, D. C.;
Campana, C. F.; Hill, C. L. Inorg. Chem. 1997, 36, 4208. (g) Anderson, T. M.;
Zhang, X.; Hardcastle, K. I.; Hill, C. L. Inorg. Chem. 2002, 41, 2477. (h) Zhang,
X.; Anderson, T. M.; Chen, Q.; Hill, C. L. Inorg. Chem. 2001, 40, 418. (i)
Mizuno, N.; Nozaki, C.; Kiyoto, I.; Misono, M. J. Am. Chem. Soc. 1998, 120,
(
15) (a) Kamata, K.; Hirano, T.; Kuzuya, S.; Mizuno, N. J. Am. Chem.
Soc. 2009, 131, 6997. (b) Kamata, K.; Hirano, T.; Mizuno, N. Chem. Commun.
2
009, 3958.
(16) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.;
Timmers, F. J. Organometallics 1996, 15, 1518.
(17) Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory
Chemicals, 3rd ed.; Pergamon Press: Oxford, U.K., 1988.
9
3
267. (j) Ben-Daniel, R.; Khenkin, A. M.; Neumann, R. Chem.;Eur. J. 2000, 6,
722.