Absorption and emission measurements of the bound porphyrins
7 (a) C. V. Kumar and A. Buranaprapuk, J. Am. Chem. Soc., 1999,
121, 4262–4270; (b) C. V. Kumar, A. Buranaprapuk, H. C. Sze,
S. Jockusch and N. J. Turro, Proc. Natl. Acad. Sci. U. S. A., 2002,
99, 5810–5815; (c) A. Suzuki, M. Hasegawa, M. Ishii,
S. Matdumura and K. Toshima, Bioorg. Med. Chem. Lett., 2005,
15, 4624–4627; (d) A. Suzuki, K. Tsumura, T. Tsuzuki,
S. Matsumura and K. Toshima, Chem. Commun., 2007,
4260–4262.
A 2 mL of porphyrin solution (10 mM) in PBS/DMSO (3 : 1 in
volume ratio) was titrated with a protein solution (2 mM in
5 mM PBS, pH = 7.0) and the absorption and fluorescence
spectra were recorded after each addition of the protein.
Protein fluorescence quenching
8 (a) M. Beltramini, P. A. Firey, M. A. J. Rodgers and G. Jori,
Biochemistry, 1987, 26, 6852–6858; (b) B. M. Aveline, T. Hasan
and R. W. Redmond, J. Photochem. Photobiol., B, 1995, 30,
161–169; (c) I. M. Borissevitch, T. T. Tominaga and
C. C. Schmitt, J. Photochem. Photobiol., A, 1998, 114, 201–207;
(d) S. M. Andrade and S. M. B. Costa, Biophys. J., 2002, 82,
1607–1619; (e) N. H. Karapetyan and V. N. Masakyan, Russ. J.
Bioorg. Chem., 2004, 30, 172–177; (f) Y.-B. Yin, Y.-N. Wang and
J.-B. Ma, Spectrochim. Acta, Part A, 2006, 64, 1032–1038;
(g) F. Tian, E. M. Johnson, M. Zammarripa, S. Samsone and
L. Brancaleon, Biomacromolecules, 2007, 8, 3767–3778;
(h) X.-L. Lu, J.-J. Fan, Y. Liu and A.-X. Hou, J. Mol. Struct.,
A 2 mL of BSA or Lyso solution (2 mM in PBS) was titrated by
a porphyrin solution (10ꢁ4 M in DMSO) and the protein
fluorescence was recorded by excitation at 280 nm. The raw
fluorescence intensities, the integral of the emission spectrum
in the range of 290–420 nm, were corrected with eqn (4) by
considering the inner filter effect of porphyrin,8g where Aex and
Aem are the optical density of porphyrin at the excitation
(280 nm) and emission wavelength maximum (345 nm) of
protein and Fraw is the raw emission intensity of the protein.
Binding constants were calculated according to the corrected
fluorescence quenching data.
2009, 934, 1–8; (i) E. Alarcon, A. M. Edwards, A. Aspee,
C. D. Borsarelli and E. A. Lissi, Photochem. Photobiol. Sci.,
2009, 8, 933–943.
´
´
9 (a) N. Brasseur, R. Langlois, C. L. Madeleine, R. Ouellet and
J. E. van Lie, Photochem. Photobiol., 1999, 69, 345–352;
(b) W. M. Sharman, J. E. van Lie and C. M. Allen, Adv. Drug
Delivery Rev., 2004, 56, 53–76; (c) B. Biplab Bose and A. Dube,
J. Photochem. Photobiol., B, 2006, 85, 49–55.
ex+Aem)/2
Fcorr = 10(A
F
(4)
raw
10 (a) P. Kubat, K. Lang, Jr and P. Anzenbacher, Biochim. Biophys.
´
Acta, Gen. Subj., 2004, 1670, 40–48; (b) M. Obata, S. Hirohara,
K. Sharyo, H. Alitomo, K. Kajiwara, S. Ogata, M. Tanihara,
C. Ohtsuki and S. Yano, Biochim. Biophys. Acta, Gen. Subj., 2007,
1770, 1204–1211; (c) S. Tanimoto, S. Matsumura and K. Toshima,
Chem. Commun., 2008, 3678–3680.
Acknowledgements
We greatly appreciate the financial support from NNSFC
(20772133, 20873170) and CAS (KJCX2.YW.H08).
11 F. L. Rodkey, J. Biol. Chem., 1961, 236, 1589–1594.
12 F. L. Rodkey, Arch. Biochem. Biophys., 1961, 94, 38–47.
13 (a) S. Fery-Forgues and D. Lavabre, J. Chem. Educ., 1999, 76,
1260–1264; (b) E. Reddi, M. Ceccon, G. Valduga, G. Jori,
J. C. Bommer, F. Elisei, L. Latterini and U. Mazzucato, Photo-
chem. Photobiol., 2002, 75, 462–470.
14 (a) N. Cauchon, H.-J. Tian, R. Langlois, C. L. Madeleine,
S. Martin, H. Ali, D. Hunting and J. E. van Lie, Bioconjugate
Chem., 2005, 16, 80–89; (b) A. Sholto, S.-W. Lee, B. M. Hoffman,
A. G. M. Barrett and B. Ehrenberg, Photochem. Photobiol., 2008,
84, 764–773.
15 (a) I. E. Borissevitch, T. T. Tominaga, H. Imasato and M. Tabak,
J. Lumin., 1996, 69, 65–76; (b) F. Ricchelli, D. Stevanin and
G. Jori, Photochem. Photobiol., 1988, 48, 13–18.
16 B. Valeur, Molecular Fluorescence. Principles and Applications,
Wiley Press, NY, 2001, p. 84.
17 J. R. Lakowicz and G. Weber, Biochemistry, 1973, 12, 4161–4170.
18 F. D’Souza, G. R. Deviprasad, M. E. El-Khouly, M. Fujitsuka
and O. Ito, J. Am. Chem. Soc., 2001, 123, 5277–5284.
19 (a) R. H. Young, K. Wehrly and R. L. Martin, J. Am. Chem. Soc.,
1971, 93, 5774–5779; (b) F. Wilkinson, W. P. Helman and
A. B. Ross, J. Phys. Chem. Ref. Data, 1993, 22, 113–262.
20 N. A. Kuznetsova, N. S. Gretsova, O. A. Yuzhakova,
V. M. Negrimovskii, O. L. Kaliya and E. A. Luk’yanets, Russ. J.
Gen. Chem., 2001, 71, 36–41.
Notes and references
1 (a) E. D. Stemberg and D. Dolphin, Tetrahedron, 1998, 54,
4151–4202; (b) T. J. Dougherty, C. J. Gomer, B. W. Henderson,
G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, J. Natl.
Cancer Inst., 1998, 90, 889–905; (c) M. R. Detty, S. L. Gibson and
S. Wagner, J. Med. Chem., 2004, 47, 3897–3915; (d) E. S. Nyman
and P. H. Hynninen, J. Photochem. Photobiol., B, 2004, 73, 1–28;
(e) A. E. O’Connor, W. M. Gallagher and A. T. Byme, Photochem.
Photobiol., 2009, 85, 1053–1074.
2 J. Moan and K. Berg, Photochem. Photobiol., 1991, 53, 549–553.
3 (a) M. J. Davies, Biochem. Biophys. Res. Commun., 2003, 305,
761–770; (b) M. J. Davies, Photochem. Photobiol. Sci., 2004, 3,
17–25; (c) M. Gracanin, C. L. Hawkins, D. I. Pattison and
M. J. Davies, Free Radical Biol. Med., 2009, 47, 92–102.
4 (a) B. Magi, A. Ettorre, S. Liberatori, L. Bini, M. Andreassi,
S. Frosali, P. Neri, V. Pallini and A. D. Stefano, Cell Death Differ.,
2004, 11, 842–852; (b) P. A. Tsaytler, M. C. O’Flaherty,
D. V. Sakharov, J. Krijgsveld and M. R. Egmond, J. Proteome
Res., 2008, 7, 3868–3878.
5 (a) F. Kratz, J. Controlled Release, 2008, 132, 171–183;
(b) M. J. Hawkins, P. Soon-Shiong and N. Desai, Adv. Drug
Delivery Rev., 2008, 60, 876–885.
6 R. K. Pandey, S. Constantine, T. Tsuchida, G. Zheng,
C. J. Medforth, M. Aoudia, A. N. Kozyrev, M. A. J. Rodgers,
H. Kato, K. M. Smith and T. J. Dougherty, J. Med. Chem., 1997,
40, 2770–2779.
21 M. Kepczyn
Photochem. Photobiol., 2002, 76, 127–134.
´
ski, R. P. Pandian, K. M. Smith and B. Ehrenberg,
22 H. Schagger and G. Von Jagow, Anal. Biochem., 1987, 166,
¨
368–379.
c
12236 Phys. Chem. Chem. Phys., 2010, 12, 12229–12236
This journal is the Owner Societies 2010