1
0
usually accompanied by the lack of selectivity. Our group
has recently described the direct use of organolithium
reagents in the Pd-catalyzed cross-coupling of a wide
drastically reduce the amount of byproducts, the light and
nontoxic LiCl being the onlystoichiometricreaction waste.
Herein, we report that the use of the commercially avail-
able Pd-PEPPSI-IPent or Pd (dba) /XPhos catalysts al-
lows the selective cross-coupling of (hetero)aryllithium
compounds with aryl chlorides in high yields under mild
conditions (rt to 40 °C) and short reaction times (40 min
to 4 h).
1
1
variety of aryl and alkenyl bromides. By the use of
t
toluene as a solvent and P( Bu) as ligand and by fine-
2
3
3
tuning of the reaction conditions, the high reactivity of the
organolithium reagents was controlled, efficient transme-
talation was achieved, and high selectivity and good yields
were obtained, avoiding the notorious lithium halogen
exchange and homocoupling side reactions. Nonetheless,
the coupling of organolithium reagents with the corre-
sponding aryl chlorides remains challenging. Aryl chlor-
ides are generally more desirable substrates than their
corresponding bromide and iodide counterparts taking
We started this study with the reaction between phenyl-
lithium and 2-chloronaphthalene 1a. Under the optimized
conditions for the cross-coupling of organolithium re-
t
11
agents with aryl bromides (Pd (dba) /P( Bu) ), the de-
2
3
3
sired product 2a was obtained in the presence of a large
amount of homocoupling side product 4 (Table 1, entry 1).
1
2
advantage of low cost and availability. However, their
low reactivity has traditionally made these substrates
reluctant coupling partners in these reactions, usually
Table 1. Screening of Different Ligands (see also Supporting
Information, Table S1)
1
3
requiring high temperatures and long reaction times.
Major efforts have been made in the past decade toward
the development of highly active Pd catalysts for the cross-
coupling of aryl chlorides and organometallic reagents
1
4
under mild reaction conditions. In general, sterically
hindered dialkylbiaryl phosphines and N-heterocyclic car-
benes (NHCs) have proved to be useful in effecting these
transformations with organoboron, organozinc, organo-
1
5
tin, or organomagnesium reagents.
We surmised that the development of new cross-
coupling methodology which combines both, cheap and
easy accessible organolithium reagents and aryl chlo-
rides is highly desirable. The anticipated process would
conv
a
b
entry
[Pd]
ligand
(%)
2a:3:4:5
c
(
10) (a) Murahashi, S.; Yamamura, M.; Yanagisawa, K.; Mita, N.;
1
2
3
4
Pd
Pd
Pd
(dba)
L1, P(tBu)
78
46:3:26:2
49:2:20:19
99:<1:<1:0
94:3:2:0
2
2
2
3
3
3
3
c
Kondo, K. J. Org. Chem. 1979, 44, 2408. (b) For an alternative approach
using a flow microreactor: Nagaki, A.; Kenmoku, A.; Moriwaki, Y.;
Hayashi, A.; Yoshida, J. Angew. Chem., Int. Ed. 2010, 49, 7543. For the
use of a silicon-based transfer agent, see: (c) Smith, A. B., III; Hoye,
A. T.; Martinez-Solorio, D.; Kim, W.; Tong, R. J. Am. Chem. Soc. 2012,
(dba)
(dba)
L2, P(Cy)
L3, XPhos
3
90
full
full
full
Pd-PEPPSI-IPent
Pd-PEPPSI-IPent
d
5
97:3:<1:0
1
34, 4533. (d) Nguyen, M. H.; Smith, A. B., III. Org. Lett. 2013, 15, 4268.
11) Giannerini, M.; Fa n~ an ꢀa s-Mastral, M.; Feringa, B. L. Nat.
Chem. 2013, 5, 667.
12) (a) Grushin, V. V.; Alper, H. Chem. Rev. 1994, 94, 1047. (b)
a
(
Conditions: PhLi (0.45 mmol, 1.8 M solution in dibutyl ether diluted
with THF to a final concentration of 0.6 M) was added (1 mL/h) to a
solution of 2-chloronaphthalene (0.3 mmol) in toluene (2 mL unless
(
b
c
Grushin, V. V.; Alper, H. In Activation of Unactive Bonds and Organic
Synthesis; Murai, S., Ed.; Springer: Berlin, 1999; p 203.
otherwise noted). 2a:3:4:5 ratios determined by GC analysis. 7.5 mol %
was used. In 1 mL of toluene. dba = dibenzylideneacetone.
d
(13) (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37, 3387.
(
b) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020. (c)
The use of PCy was detrimental for the selectivity and
3
Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 2719. (d) Littke, A. F.;
Schwarz, L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 6343. (e) Littke,
A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176. (f) Wolfe, J. P.;
Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38, 2413. (g) Old, D. W.;
Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722. (h)
Buchwald, S. L.; Surrey, D. L. Angew. Chem., Int. Ed. 2008, 47, 6338. (i)
Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem.
1-phenylnaphthalene 5 was also formed indicating the
formation of a benzyne intermediate via 1,2-elimination
1
6
promoted by the organolithium reagent (entry 2). To our
delight, when XPhos (L3) was used in combination with
Pd (dba) (2.5 mol %) the cross-coupled product 2a was
2
002, 67, 5553. (j) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41,
2
3
1
290. (k) Altenhoff, G.; Goddard, R.; Lehman, C. W.; Glorius, F. J. Am.
obtained with excellent selectivity (>99%), avoiding de-
halogenation (<1%) and inhibiting the formation of the
homocoupling orisomerized side products (<1%, entry 3).
The use of other sterically hindered phosphines resulted in
lower selectivity with incomplete conversion (see Support-
ing Information (SI), Table S1). We also evaluated cata-
lysts based on NHC ligands and observed that the air
Chem. Soc. 2004, 126, 15195.
14) (a) Fu, G. C. Acc. Chem. Res. 2008, 41, 1555. (b) Martin, R.;
Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461. (c) Nasielski, J.; Hadei,
N.; Achonduh, G. E.; Kantchev, A. B.; O’Brien, C. J.; Lough, A.; Organ,
M. G. Chem.;Eur. J. 2010, 16, 10844. (d) Valente, C.; Calimsiz, S.; Hoi,
K. H.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem., Int. Ed. 2012,
(
5
1, 3314.
(
15) (a) Navarro, O.; Kelly, R. A.; Nolan, S. P. J. Am. Chem. Soc.
2
003, 125, 16194. (b) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.;
1
5e
Scott, N. M.; Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101. (c) Diebolt,
O.; Braunstein, P.; Nolan, S. P.; Cazin, C. S. J. Chem. Commun. 2008,
3
stable Pd-PEPPSI-IPent, introduced by Organ, also
displayed high reactivity and selectivity (entry 4). In this
190. (d) Han, C.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 7532. (e)
Organ, M. G.; C- alimsiz, S.; Sayah, M.; Hoi, K. H.; Lough, A. J. Angew.
Chem., Int. Ed. 2009, 48, 2383. (f) Sau, S. C.; Santra, S.; Sen, T. K.;
Mandal, S. K.; Koley, D. Chem. Commun. 2012, 48, 555.
(16) Kaye, S.; Fox, J. M.; Hicks, F. A.; Buchwald, S. L. Adv. Synth.
Catal. 2001, 343, 789.
B
Org. Lett., Vol. XX, No. XX, XXXX