Journal of the American Chemical Society
Page 8 of 28
electrode surface. In comparison, hydrofuroin formation was
versity. X.C. and D.C. are grateful to undergraduate research-
ers Hyunjin Moon, Aimee Pierce, Geng Sun, and Yuan Tan
from Iowa State University for their assistance.
1
2
3
4
5
6
7
8
unaffected, which suggests that the first electron transferred
in the electroreduction mechanism, prior to dimerization, is
an outer-sphere process and is therefore insensitive to the
electrode surface properties or catalytic activity. Production
rates of FA and MF exhibited a strong H/D isotope effect,
which strongly suggests they are formed through the ECH
mechanism by a reaction with electrochemically adsorbed H
(or D). An investigation of furfural reduction under proton
mass-transport-limited conditions by RDE voltammetry con-
firmed that MF and FA formation consume protons at the
electrode/electrolyte interface, consistent with the ECH
mechanism. A comparison of the products formed on a Cu
electrode to those formed on a high hydrogen overpotential
Pb electrode provided additional evidence that MF and FA for-
mation requires Hads, through the ECH mechanisms. A path-
way study revealed that hydrogenation and hydrogenolysis
products, FA and MF, are formed mainly through parallel re-
actions, in which FA is not a major intermediate for MF for-
mation. Finally, understanding of the underlying mechanisms
enabled the manipulation of electrochemical furfural reduc-
tion by rationally tuning the electrode potential, electrolyte
pH, and furfural concentration to promote selective formation
of important chemicals for bio-based polymers and fuels pro-
duction. Collectively, these studies highlight the decisive role
that reaction conditions play in determining the selectivity of
ECH reactions of bioderived oxygenates to hydrogenation or
hydrogenolysis products, and the competition between ECH,
electroreduction, and HER pathways.
REFERENCES
(1) Lessard, J., Electrocatalytic Hydrogenation. In Organic
Electrochemistry, 5th ed.; Hammerich, O.; Speiser, B., Eds. CRC Press:
Boca Raton, FL: 2015; pp 1658–1664.
(2) Coche, L.; Moutet, J.-C., J. Am. Chem. Soc. 1987, 109 6887–6889.
(3) Chapuzet, J. M.; Lasia, A.; Lessard, J., Electrocatalytic Hydrogenation
of Organic Compounds. In Electrocatalysis, Lipkowski, J.; Ross, P. N., Eds.
Wiley-VCH: New York: 1998; pp 155–159.
(4) Suastegui, M.; Matthiesen, J. E.; Carraher, J. M.; Nacu Hernandez;
Quiroz, N. R.; Okerlund, A.; Cochran, E. W.; Shao, Z.; Tessonnier, J.-P.,
Angew. Chem. Int. Ed. 2016, 55 2368–2373.
(5) Schmickler, W.; Santos, E., Hydrogen reaction and electrocatalysis. In
Interfacial Electrochemistry, 2nd ed.; Schmickler, W.; Santos, E., Eds.
Springer-Verlag: Berlin Heidelberg: 2010; pp 163–164.
(6) Ludvík, J., Reduction of Aldehydes Ketones and Azomethines. In
Organic Electrochemistry, 5th ed.; Hammerich, O.; Speiser, B., Eds. CRC
Press: Boca Raton, FL: 2015; pp 1202–1205.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(7) Jiang, Y.; Wang, X.; Cao, Q.; Dong, L.; Guan, J.; Mu, X., Chemical
Conversion of Biomass to Green Chemicals. In Sustainable Production of
Bulk Chemicals, 1st ed.; Xian, M., Ed. Springer: Dordrecht: 2016; p 19.
(8) Chheda, J. N.; Huber, G. W.; Dumesic, J. A., Angew. Chem. Int. Ed.
2007, 46 7164–7183.
(9) Kwon, Y.; Schouten, K. J. P.; van der Waal, J. C.; de Jong, E.; Koper,
M. T. M., ACS Catal. 2016, 6 6704−6717.
(10) Binder, J. B.; Raines, R. T., J. Am. Chem. Soc. 2009, 131 1979–1985.
(11) Jiang, Y.; Woortman, A. J.; Alberda van Ekenstein, G. O.; Petrović, D.
M.; Loos, K., Biomacromolecules 2014, 15 2482–2493.
(12) Thananatthanachon, T.; Rauchfuss, T. B., Angew. Chem. Int. Ed. 2010,
49 6616–6618.
(13) Bohre, A.; Dutta, S.; Saha, B.; Abu-Omar, M. M., ACS Sustainable
Chem. Eng. 2015, 3 1263–1277.
(14) Nilges, P.; Schröder, U., Energy Environ. Sci. 2013, 6 2925–2931.
(15) Roylance, J. J.; Kim, T. W.; Choi, K.-S., ACS Catal. 2016, 6 1840–
1847.
(16) Jung, S.; Biddinger, E. J., ACS Sustainable Chem. Eng. 2016, 4 6500–
6508.
(17) Kwon, Y.; de Jong, E.; Raoufmoghaddam, S.; Koper, M. T. M.,
ChemSusChem 2013, 6 1659–1667.
(18) Kwon, Y.; Birdja, Y. Y.; Raoufmoghaddam, S.; Koper, M. T. M.,
ChemSusChem 2015, 8 1745–1751.
(19) Li, Z.; Kelkar, S.; Lam, C. H.; Luczek, K.; Jackson, J. E.; Miller, D. J.;
Saffron, C. M., Electrochim. Acta 2012, 64 87–93.
(20) Parpot, P.; Bettencourt, A. P.; Chamoulaud, G.; Kokoh, K. B.; Belgsir,
E. M., Electrochim. Acta 2004, 49 397–403.
(21) Glasoe, P. K.; Long, F. A., J. Phys. Chem. 1960, 64 188–190.
(22) Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals
and Applications. 2nd ed.; John Wiley & Sons, Inc.: New York, 2001; p
116.
(23) Schmickler, W.; Santos, E., Theoretical considerations of electron-
transfer reactions. In Interfacial Electrochemistry, 2nd ed.; Schmickler, W.;
Santos, E., Eds. Springer-Verlag: Berlin Heidelberg: 2010; p 99.
(24) Xiao, X.; Pan, S.; Jang, J. S.; Fan, F.-R. F.; Bard, A. J., J. Phys. Chem.
C 2009, 113 14978–14982.
(25) Bard, A. J., J. Am. Chem. Soc. 2010, 132 7559–7567.
(26) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G.
M., Chem. Rev. 2005, 105 1103−1169.
(27) Tan, Y. S.; Srinivasan, M. P.; Pehkonen, S. O.; Chooi, S. Y. M., J. Vac.
Sci. Technol. A 2004, 22 1917–1925.
(28) Arkhipushkin, I. A.; Pronin, Y. E.; Vesely, S. S.; Kazansky, L. P., Int.
J. Corros. Scale Inhib. 2014, 3 78–88.
(29) Woods, R.; Hope, G. A.; Watling, K., J. Appl. Electrochem. 2000, 30
1209–1222.
(30) Marconato, J. C.; Bulhões, L. O.; Temperini, M. L., Electrochim. Acta
1998, 43 771–780.
ASSOCIATED CONTENT
Supporting Information
1
Experimental details, H NMR and MS characterizations for
hydrofuroin, supplemental voltammetry and preparative elec-
trolysis results. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
*wzli@iastate.edu.
Author Contributions
All authors have given approval to the final version of the
manuscript. ‡ X.C. and D.C. contributed equally.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This research was funded by NSF-CBET 1512126. W.L. acknowl-
edges the Iowa State University Start-Up Fund, Ames Labora-
tory Start-Up Fund, Iowa Energy Center, Bailey Research Ca-
reer Development Award, and Richard Seagrave professor-
ship. We thank Dr. Sarah Cady (ISU Chemical Instrumenta-
tion Facility) for training and assistance pertaining to the
AVIII-600 results included in this publication, fruitful discus-
sion with Prof. Kurt Hebert, Prof. Brent Shanks, and Dr. Toni
Pfennig from Iowa State University, and exchange of ideas
with Prof. Bin Liu and Nannan Shan from Kansas State Uni-
̈
(31) Taubert, C. E.; Kolb, D. M.; Memmert, U.; Meyer, H., J. Electrochem.
Soc. 2007, 154 D293–D299.
(32) Wang, W.; Lee, T.; Reed, M. A., Phys. Rev. B. 2003, 68 035416-
035411–035416-035417.
ACS Paragon Plus Environment