Angewandte Chemie International Edition
10.1002/anie.201912962
COMMUNICATION
scaffold and the two adenines moieties. Based on biophysical
characterizations and DFT calculations, the structure of c-di-
Roelfes, Chem. Sci. 2013, 4, 2013-2017; g) A. Rioz-Martinez, J.
Oelerich, N. Segaud, G. Roelfes, Angew. Chem. Int. Ed. 2016, 55,
14136-14140; Angew. Chem. 2016, 128, 14342-14346.
AMP·Cu is proposed as a dimeric complex where the Cu2+ ion
2+
[
[
5]
6]
a) A. J. Boersma, J. E. Klijn, B. L. Feringa, G. Roelfes, J. Am. Chem.
Soc. 2008, 130, 11783-11790; b) A. J. Boersma, B. L. Feringa, G.
Roelfes, Angew. Chem. Int. Ed. 2009, 48, 3346-3348; Angew. Chem.
is likely locating in the A-A plane via coordinating with two N7
and one phosphate-oxygen. This study suggests that the CDNs
serve as powerful scaffolds in order to construct artificial
metalloribozymes and their (enantio)selective performances
could be tuned by alteration of the nucleobases in CDNs. Given
the ability to bind metal ions and catalyze the described
reactions, we anticipate that cyclic dinucleotides could be able to
catalyze other challenging organic transformations. In addition,
we speculate that such small, naturally occurring cyclic RNAs
could have been able to catalyze metabolic reactions in an early
RNA world scenario.
2009, 121, 3396-3398; c) E. W. Dijk, A. J. Boersma, B. L. Feringa, G.
Roelfes, Org. Biomol. Chem. 2010, 8, 3868-3873; d) A. Garcia-
Fernandez, R. P. Megens, L. Villarino, G. Roelfes, J. Am. Chem. Soc.
2016, 138, 16308-16314.
a) S. Roe, D. J. Ritson, T. Garner, M. Searle, J. E. Moses, Chem.
Commun. 2010, 46, 4309-4311; b) C. Wang, G. Jia, J. Zhou, Y. Li, Y.
Liu, S. Lu, C. Li, Angew. Chem. Int. Ed. 2012, 51, 9352-9355; Angew.
Chem. 2012, 124, 9486-9489; c) C. Wang, Y. Li, G. Jia, Y. Liu, S. Lu, C.
Li, Chem. Commun. 2012, 48, 6232-6234; d) M. Wilking, U. Hennecke,
Org. Biomol. Chem. 2013, 11, 6940-6945; e) S. Dey, A. Jaeschke,
Angew. Chem. Int. Ed. 2015, 54, 11279-11282; Angew. Chem. 2015,
127, 11432-11436; f) Y. Li, M. Cheng, J. Hao, C. Wang, G. Jia, C. Li,
Chem. Sci. 2015, 6, 5578-5585; g) M. Cheng, Y. Li, J. Zhou, G. Jia, S.-
M. Lu, Y. Yang, C. Li, Chem. Commun. 2016, 52, 9644-9647; h) S. Dey,
C. L. Ruehl, A. Jaeschke, Chem. Eur. J. 2017, 23, 12162-12170.
X. Xu, W. Mao, F. Lin, J. Hu, Z. He, X. Weng, C.-J. Wang, X. Zhou,
Catal. Commun. 2016, 74, 16-18.
Acknowledgements
We thank Prof. Yu Fang, Prof. Dong Xue, Prof. Yan Jin, Prof.
Xiaodong Shi and Prof. Kaiqiang Liu for helpful discussions. We
are grateful for the financial supports of the National Natural
Science Foundation of China (Nos. 21703132, 21773149,
[
7]
[8]
B. Seelig, S. Keiper, F. Stuhlmann, A. Jaschke, Angew. Chem. Int. Ed.
2000, 39, 4576-4579; Angew. Chem. 2000, 112, 4764-4768.
[
9]
N. Duchemin, E. Benedetti, L. Bethge, S. Vonhoff, S. Klussmann, J.-J.
2
1273142), the Natural Science Foundation of Shaanxi Province
Vasseur, J. Cossy, M. Smietana, S. Arseniyadis, Chem. Commun.
of China (2019JQ161), and the Fundamental Research Funds
for the Central Universities (GK201802001).
2016, 52, 8604-8607.
[
[
10] J. J. Marek, U. Hennecke, Chem. Eur. J. 2017, 23, 6009-6013.
11] a) P. Ross, H. Weinhouse, Y. Aloni, D. Michaeli, P. Weinbergerohana,
R. Mayer, S. Braun, E. Devroom, G. A. Vandermarel, J. H. Vanboom, M.
Benziman, Nature 1987, 325, 279-281; b) G. Witte, S. Hartung, K.
Buttner, K. P. Hopfner, Mol. Cell 2008, 30, 167-178; c) B. W. Davies, R.
W. Bogard, T. S. Young, J. J. Mekalanos, Cell 2012, 149, 358-370; d) P.
Gao, M. Ascano, Y. Wu, W. Barchet, B. L. Gaffney, T. Zillinger, A. A.
Serganov, Y. Liu, R. A. Jones, G. Hartmann, T. Tuschl, D. J. Patel, Cell
2013, 153, 1094-1107; e) A. T. Whiteley, J. B. Eaglesham, C. C. d. O.
Mann, B. R. Morehouse, B. Lowey, E. A. Nieminen, O. Danilchanka, D.
S. King, A. S. Y. Lee, J. J. Mekalanos, P. J. Kranzusch, Nature 2019,
Conflict of interest
The authors declare no conflict of interest.
Keywords: nucleic acid based catalysts • cyclic dinucleotide • c-
di-AMP • artificial metalloribozyme • enantioselective catalysis
5
67, 194-199.
[
[
1]
2]
a) Y. Lu, N. Yeung, N. Sieracki, N. M. Marshall, Nature 2009, 460, 855-
62; b) N. J. Turner, Nat. Chem. Biol. 2009, 5, 568-574; c) A. Pordea, T.
[
12] a) R. Hengge, Nat. Rev. Microbiol. 2009, 7, 263-273; b) R. M. Corrigan,
A. Gruendling, Nat. Rev. Microbiol. 2013, 11, 513-524; c) L. Sun, J. Wu,
F. Du, X. Chen, Z. J. Chen, Science 2013, 339, 786-791; d) J. Wu, L.
Sun, X. Chen, F. Du, H. Shi, C. Chen, Z. J. Chen, Science 2013, 339,
8
R. Ward, Synlett 2009, 3225-3236; d) T. Heinisch, T. R. Ward, Curr.
Opin. Chem. Biol. 2010, 14, 184-199; e) O. Pamies, M. Dieguez, J.-E.
Backvall, Adv. Synth. Catal. 2015, 357, 1567-1586; f) J. F. Hartwig, T.
R. Ward, Acc. Chem. Res. 2019, 52, 1145-1145.
8
26-830.
13] a) B. L. Gaffney, V. Elizabeth, Z. Jianwei, R. A. Jones, Org. Lett. 2010,
2, 3269; b) C. Wang, M. Sinn, J. Stifel, A. C. Heiler, A. Sommershof, J.
[
[
a) F. Schwizer, Y. Okamoto, T. Heinisch, Y. Gu, M. M. Pellizzoni, V.
Lebrun, R. Reuter, V. Kohler, J. C. Lewis, T. R. Ward, Chem. Rev.
1
S. Hartig, J. Am. Chem. Soc. 2017, 139, 16154-16160.
2
018, 118, 142-231; b) S. N. Natoli, J. F. Hartwig, Acc. Chem. Res.
019, 52, 326-335; c) M. T. Reetz, Acc. Chem. Res. 2019, 52, 336-344;
14] a) Z. Y. Zhang, B. L. Gaffney, R. A. Jones, J. Am. Chem. Soc. 2004,
2
126, 16700-16701; b) Z. Y. Zhang, S. Kim, B. L. Gaffney, R. A. Jones, J.
d) A. D. Liang, J. Serrano-Plana, R. L. Peterson, T. R. Ward, Acc.
Chem. Res. 2019, 52, 585-595; e) C. Zeymer, D. Hilvert, Annu. Rev.
Biochem. 2018, 87, 131-157; f) F. Nastri, M. Chino, O. Maglio, A.
Bhagi-Damodaran, Y. Lu, A. Lombardi, Chem. Soc. Rev. 2016, 45,
Am. Chem. Soc. 2006, 128, 7015-7024; c) S. Nakayama, I. Kelsey, J.
Wang, K. Roelofs, B. Stefane, Y. Luo, V. T. Lee, H. O. Sintim, J. Am.
Chem. Soc. 2011, 133, 4856-4864; d) S. Nakayama, I. Kelsey, J. Wang,
H. O. Sintim, Chem. Commun. 2011, 47, 4766-4768; e) M. Gentner, M.
G. Allan, F. Zaehringer, T. Schirmer, S. Grzesiek, J. Am. Chem. Soc.
5020-5054; g) J. Bos, G. Roelfes, Curr. Opin. Chem. Biol. 2014, 19,
135-143; h) C. M. Thomas, T. R. Ward, Chem. Soc. Rev. 2005, 34,
337-346.
2
012, 134, 1019-1029.
15] B. Wang, Z. Wang, U. Javornik, Z. Xi, J. Plavec, Sci. Rep. 2017, 7,
6550.
[
[
[
[
[
3]
4]
G. Roelfes, B. L. Feringa, Angew. Chem. Int. Ed. 2005, 44, 3230-3232;
Angew. Chem. 2005, 117, 3294-3296.
1
16] B. T. Roembke, J. Wang, S. Nakayama, J. Zhou, H. O. Sintim, RSC
Adv. 2013, 3, 6305-6310.
a) D. Coquiere, B. L. Feringa, G. Roelfes, Angew. Chem. Int. Ed. 2007,
46, 9308-9311; Angew. Chem. 2007, 119, 9468-9671; b) N. Shibata, H.
17] C. Wang, G. Jia, Y. Li, S. Zhang, C. Li, Chem. Commun. 2013, 49,
Yasui, S. Nakamura, T. Toru, Synlett 2007, 1153-1157; c) P. Fournier,
R. Fiammengo, A. Jaeschke, Angew. Chem. Int. Ed. 2009, 48, 4426-
11161-11163.
[
[
18] A. Erxleben, Coord. Chem. Rev. 2018, 360, 92-121.
4
429; Angew. Chem. 2009, 121, 4490-4493; d) A. J. Boersma, R. P.
Megens, B. L. Feringa, G. Roelfes, Chem. Soc. Rev. 2010, 39, 2083-
092; e) A. J. Boersma, D. Coquiere, D. Geerdink, F. Rosati, B. L.
Feringa, G. Roelfes, Nat. Chem. 2010, 2, 991-995; f) J. Oelerich, G.
19] H. Huo, C. Fu, K. Harms, E. Meggers, J. Am. Chem. Soc. 2014, 136,
2990-2993.
2
This article is protected by copyright. All rights reserved.