liminary mechanistic insights into the oxidative amination
of styrene prompted us to evaluate the NHC-coordinated Pd
Table 1. Catalyst Screening Data for the Aerobic Oxidative
Amination of 1a
1
0a,11
complex, [(IPr)PdCl
complex proved to be less effective than other Pd catalysts,
such as (Et N) PdCl . Nevertheless, prospects for the use of
2 2
] , in such reactions;
however, this
3
2
2
NHC ligands in Pd-catalyzed oxidation reactions have been
clearly demonstrated by Sigman and co-workers.12 In par-
ticular, they reported a new class of NHC-Pd complexes,
(
NHC)Pd(O
for aerobic alcohol oxidation.
that these complexes are also effective for the oxidative
2 2 2
CR) (OH ), that are highly effective catalysts
%
of 2/3b
yield
1
2a,d
entry
catalyst
[IMesPdCl
IMesPd(OAc)
IMesPd(TFA)
IPrPd(TFA)
solvent
additive
Recently, Mu n˜ iz showed
1
2
3
4
5
6
7
8
9
2
]
2
toluene
toluene
toluene
toluene
toluene 3A MS
toluene 1 equiv of NaOAc
toluene 1 equiv of KH
toluene 1 equiv of MgO
toluene 1 equiv of NaHCO
toluene 1 equiv of KOtBu
toluene 20% pyridine
0/0
83/7
88/1
85/1
35/2
88/7
81/1
70/3
75/2
42/0
20/4
34/0
94/0
91/4
8
f
cyclization of several o-allylphenol substrates. These ex-
amples highlight propects for the use of NHC ligands in
catalytic oxidation reactions.
2
OH
2
2
OH
2
1
3
2
OH
2
IMesPd(TFA)
IMesPd(TFA)
IMesPd(TFA)
IMesPd(TFA)
IMesPd(TFA)
IMesPd(TFA)
IMesPd(TFA)
IMesPd(TFA)
2
2
2
2
2
2
2
2
OH
2
2
2
2
2
2
2
We intiated our studies by evaluating IMes- and IPr-
OH
OH
OH
OH
OH
OH
OH
11
coordinated Pd complexes as potential catalysts for the
2 4
PO
aerobic oxidative cyclization of the cis-crotyl tosylanilide
substrate 1 (Table 1). To ensure maximum data reliability,
we independently synthesized the Pd complexes used in this
study rather than preparing them in situ from the corre-
sponding PdX
The (IMes)Pd(O
3
10
11
12
13
14
15
16
17
18
19
20
21
source and imidazolium salt of the carbene.
CCF (OH ) complex, which is the most
2
toluene 10% CF
3
CO
2
H
2
IMesPd(TFA)
IMesPd(TFA)
2
OH
OH
2
2
toluene 10% AcOH
toluene 20% PhCO
toluene
)
2
3
2
2
2
2
H
effective catalyst, was also characterized by X-ray crystal-
lography (Figure 1).
c
Pd(OAc)
Pd(OAc)
Pd(OAc)
2
2
2
54/5
14
toluene 20% PhCO
toluene 20% pyridine
CH CN
2
H
45/0c
80/0
18/0
34/0
46/0
2/0
IMesPd(TFA)
IMesPd(TFA)
IMesPd(TFA)
IMesPd(TFA)
2
2
2
2
OH
OH
OH
OH
2
2
2
2
3
DME
DMF
CHCl
3
a
Reaction conditions: substrate (100 µmol), Pd (5 µmol), additive, 1
b 1
mL of solvent, 1 atm of O2, 80 °C, 4 h. H NMR yield, internal standard
1,3,5-trimethoxybenzene. No additional products are generally observed;
the remainder is unreacted starting material. An unidentified byproduct
15-20%, based on mass balance) is also obtained.
)
c
(
as the source of oxidant if carboxylic acid cocatalysts are
employed in the reaction, and they also constitute the first
catalytic application of Pd complexes bearing a new class
2 3 2 2
Figure 1. Molecular structure of (IMes)Pd(O CCF ) (OH ). Hy-
drogen atoms are omitted for clarity. Thermal ellipsoids are shown
at 30% probability.
9
of seven-membered NHC ligands that we recently described.
Ongoing studies in our laboratory are focused on the
development of dioxygen-coupled methods for both intra-
8
e,10
and intermolecular oxidative amination of alkenes.
Pre-
2 2
Pd-chloride complexes, [IMesPdCl ] (Table 1, entry 1)
and IMesPd(allyl)Cl (not shown), were ineffective as cata-
lysts; however, complexes with acetate or trifluoroacetate
(
7) For recent reviews describing direct dioxygen-coupled Pd-catalyzed
oxidative cyclization reactions, see: (a) Stahl, S. S. Angew. Chem., Int.
Ed. 2004, 43, 3400-3420. (b) Stoltz, B. M. Chem. Lett. 2004, 33, 362-
(TFA) as the anionic ligand were quite successful (entries
3
2
67. (c) Sigman, M. S.; Schultz, M. J. Org. Biomol. Chem. 2004, 2, 2551-
554. (d) Stahl, S. S. Science 2005, 309, 1824-1826.
(8) See, for example: (a) van Benthem, R. A. T. M.; Hiemstra, H.; van
(11) Abbreviations: IPr ) N,N′-bis(2,6-diisopropylphenyl)imidazol-2-
ylidine; IMes ) N,N′-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; DMAP
) 4-(N,N′-dimethylamino)pyridine.
(12) (a) Jensen, D. R.; Schultz, M. J.; Mueller, J. A.; Sigman, M. S.
Angew. Chem., Int. Ed. 2003, 42, 3810-3813. (b) Jensen, D. R.; Sigman,
M. S. Org. Lett. 2003, 5, 63-65. (c) Mueller, J. A.; Goller, C. P.; Sigman,
M. S. J. Am. Chem. Soc. 2004, 126, 9724-9734. (d) Schultz, M. J.;
Hamilton, S. S.; Jensen, D. R.; Sigman, M. S. J. Org. Chem. 2005, 70,
3343-3352. (e) Cornell, C. N.; Sigman, M. S. J. Am. Chem. Soc. 2005,
127, 2796-2797.
Leeuwen, P. W. N. M.; Geus, J. W.; Speckamp, W. N. Angew. Chem., Int.
Ed. Engl. 1995, 34, 457-460. (b) R o¨ nn, M.; B a¨ ckvall, J.-E.; Andersson,
P. G. Tetrahedron Lett. 1995, 36, 7749-7752. (c) Larock, R. C.; Hightower,
T. R.; Hasvold, L. A.; Peterson, K. P. J. Org. Chem. 1996, 61, 3584-
3
585. (d) Larock, R. C.; Pace, P.; Yang, H.; Russell, C. E.; Cacchi, S.;
Fabrizi, G. Tetrahedron 1998, 54, 9961-9980. (e) Fix, S. R.; Brice, J. L.;
Stahl, S. S. Angew. Chem., Int. Ed. 2002, 41, 164-166. (f) Mu n˜ iz, K. AdV.
Synth. Catal 2004, 346, 1425-1428.
(9) (a) Scarborough, C. C.; Grady, M. J. W.; Guzei, I. A.; Gandhi, B.
A.; Bunel, E. E.; Stahl, S. S. Angew. Chem., Int. Ed. 2005, 44, 5269-
272. (b) Scarborough, C. C.; Popp, B. V.; Guzei, I. A.; Stahl, S. S. J.
Organomet. Chem. 2005, 690, 6143-6155.
10) (a) Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc.
(13) For a review of the use of NHCs in metal-catalyzed oxidation
reactions, see: Rogers, M. M.; Stahl, S. S. N-Heterocyclic Carbenes in
Transition Metal Catalysis; Glorius, F., Ed.; Springer: New York, 2006;
in press.
(14) For related crystallographically characterized (NHC)Pd(O2CR)2
complexes, see refs 9b, 12a, and 12c, and the following: Viciu, M. S.;
Stevens, E. D.; Petersen, J. L. Organometallics 2004, 23, 3752-3755.
5
(
2
003, 125, 12996-12997. (b) Brice, J. L.; Harang, J. E.; Timokhin, V. I.;
Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 2868-2869. (c)
Timokhin, V. I.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 17888-17893.
2258
Org. Lett., Vol. 8, No. 11, 2006