pubs.acs.org/Langmuir
© 2009 American Chemical Society
Photocontrolled Self-Assembly and Disassembly of Block Ionomer Complex
Vesicles: A Facile Approach toward Supramolecular Polymer
Nanocontainers
Yapei Wang,† Peng Han,† Huaping Xu,† Zhiqiang Wang,† Xi Zhang,*,† and
Alexander V.Kabanov‡
†Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry, Tsinghua University,
Beijing 100084, P. R. China, and ‡Department of Pharmaceutical Sciences and Center for Drug Delivery and
Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska
68198-5830
Received July 3, 2009
A new concept of designing a photocontrollable supramolecular polymer nanocontainer through the electrostatic
association between an azobenzene-containing surfactant (AzoC10) and a double-hydrophilic block ionomer, poly-
(ethylene glycol)-b-poly(acrylic acid) (PEG43-PAA153), is described. Such a block ionomer complex can self-assemble in
aqueous solution and form vesicle-like aggregates, which are composed of a poly(ethylene glycol) corona and a
poly(acrylic acid) shell associated with azobenzene-containing surfactant. The photoisomerization of azobenzene
moieties in the block ionomer complex can reversibly tune the amphiphilicity of the surfactants, inducing the
disassembly of the vesicles. Such block ionomer complex vesicles are further evaluated as nanocontainers capable to
encapsulate and release guest solutes on demand controlled by light irradiation. For example, the vesicles encapsulating
the fluorescein sodium display clear spherical images observed by fluorescence microscopy. However, such fluorescence-
marked images disappear after releasing the solute from the vesicles triggered by the UV light. Such novel materials are
of both basic and practical significance, especially as prospective nanocontainers for cargo delivery.
Introduction
controlled drug delivery through tuning the amphiphilicity of the
block copolymers.2 Generally, the drug species encapsulated in or
attached to the polymeric assemblies can be released via rever-
sible3 or irreversible4 disassembly of the hydrophobic core-form-
ing segments. However, the self-assembly of amphiphilic block
copolymers usually involves the use of organic solvents and
suffers from complicated preparation processes. More than a
decade ago Kataoka’s group5 and Kabanov’s group6 developed a
concept for preparing block copolymer assemblies on the basis of
electrostatic interactions. This new family of polymeric assemblies
is formed by double-hydrophilic block copolymers, containing
ionic and nonionic water-soluble segments (block ionomers), and
can incorporate many charged polymers, including synthetic
polyions,7 enzymes,8 DNA,9 RNA,10 and others. One great
advantage of this approach is that such assemblies are formed
in water, and no organic solvent is required for their preparation.
Moreover, the block ionomers with appropriate molecular weight
and composition can also form micelle-like or vesicle-like aggre-
gates. The basic mechanism of the formation of such polymeric
assemblies involves the core precipitation of the charged blocks of
block ionomers with the oppositely charged polyions. Besides the
Self-assembly of amphiphilic block copolymers induces forma-
tion of nanosized polymeric micelles or vesicles, which have been
widely explored as carriers for enzymes or nonbiological catalysts
as well as containers for drug or gene delivery.1 Since amphiphi-
licity is the principal basis of such self-assembly, some approaches
have been developed to modulate the polymeric assemblies for
*Corresponding author. E-mail: xi@mail.tsinghua.edu.cn.
(1) (a) Zhao, C.; Winnik, M. A.; Riess, G.; Croucher, M. D. Langmuir 1990, 6,
514. (b) Xu, R.; Winnik, M. A.; Hallett, F. R.; Riess, G.; Croucher, M. D. Macro-
molecules 1991, 24, 87. (c) Zhang, L.; Eisenberg, A. Science 1995, 268, 1728.
(d) Discher, B. M.; Won, Y.-Y.; Ege, D. S.; Lee, J. C.-M.; Bates, F. S.; Discher, D. E.;
Hammer, D. A. Science 1999, 284, 1143. (e) Kukula, H.; Schlaad, H.; Antonietti, M.;
€
Forster, S. J. Am. Chem. Soc. 2002, 124, 1658. (f) Dou, H.; Jiang, M.; Peng, H.; Chen,
D.; Hong, Y. Angew. Chem., Int. Ed. 2003, 42, 1516. (g) Zhou, Y.; Yan, D. Angew.
Chem., Int. Ed. 2004, 43, 4896. (h) Pochan, D. J.; Chen, Z.; Cui, H.; Hales, K.; Qi, K.;
Wooley, K. L. Science 2004, 306, 94. (i) Torchilin, V. P. Cell. Mol. Life Sci. 2004, 61,
2549. (j) Vriezema, D. M.; Garcia, P. M. L.; Oltra, N. S.; Hatzakis, N. S.; Kuiper, S. M.;
Nolte, R. J . M.; Rowan, A. E.; van Hest, J. C. M. Angew. Chem., Int. Ed. 2007, 46,
7378. (k) Read, E. S.; Armes, S. P. Chem. Commun. 2007, 3021. (l) Motala-Timol, S.;
Jhurry, D.; Zhou, J.; Bhaw-Luximon, A.; Mohun, G.; Ritter, H. Macromolecules 2008,
41, 5571. (m) Wang, Y.; Xu, H.; Ma, N.; Wang, Z.; Zhang, X.; Liu, J.; Shen, J. Langmuir
2006, 22, 5552.
(2) (a) Ringsdorf, H.; Schlarb, B.; Venzmer, J. Angew. Chem., Int. Ed. Engl.
1988, 27, 113. (b) Wang, Y. P.; Xu, H. P.; Zhang, X. Adv. Mater. 2009, ASAP (DOI:
10.1002/adma.200803276).
(5) Harada, A.; Kataoka, K. Macromolecules 1995, 28, 5294.
(3) (a) Wang, G.; Tong, X.; Zhao, Y. Macromolecules 2004, 37, 8911. (b) Lee, H.;
Wu, W.; Oh, J. K.; Mueller, L.; Sherwood, G.; Peteanu, L.; Kowalewski, T.;
Matyjaszewski, K. Angew. Chem., Int. Ed. 2007, 46, 2453. (c) Zhang, W.; Shi, L.;
Ma, R.; An, Y.; Xu, Y.; Wu, K. Macromolecules 2005, 38, 8850. (d) Rodriguez-
Hernandez, J.; Lecommandoux, S. J. Am. Chem. Soc. 2005, 127, 2026. (e) Martin, T. J.;
Prochazka, K.; Munk, P.; Webber, S. E. Macromolecules 1996, 29, 6071.
(6) Kabanov, A. V.; Vinogradov, S. V.; Suzdaltseva, Y. G.; Alakhov, V. Y.
Bioconjug. Chem. 1995, 6 639.
(7) (a) Harada, A.; Kataoka, K. Science 1999, 283, 65. (b) Koide, A.; Kishimura,
A.; Osada, K.; Jang, W.-D.; Yamasaki, Y.; Kataoka, K. J. Am. Chem. Soc. 2006, 128,
5988. (c) Kabanov, A. V.; Bronich, T. K.; Kabanov, V. A.; Yu, K.; Eisenberg, A.
Macromolecules 1996, 29, 6797. (d) Vakil, R.; Kwon, G. S. Langmuir 2006, 22, 9723.
ꢀ
ꢀ~
(4) (a) Haag, R. Angew. Chem., Int. Ed. 2004, 43, 278. (b) Bae, Y.; Fukushima, S.;
Harada, A.; Kataoka, K. Angew. Chem., Int. Ed. 2003, 42, 4640. (c) Gillies, E. R.;
(e) Yanez, A.; Forrest, M. L.; Ohgami, Y.; Kwon, G. S.; Davies, N. M. Cancer
Chemother. Pharmacol. 2008, 21, 133.
ꢀ
Frechet, J. M. J. Chem. Commun. 2003, 1640. (d) Jiang, J.; Tong, X.; Zhao, Y. J. Am.
(8) (a) Harada, A.; Kataoka, K. J. Am. Chem. Soc. 1999, 121, 9241.
(b) Vinogradov, S. V.; Bronich, T. K.; Kabanov, A. V. Bioconjugate Chem. 1998, 9, 805.
(9) Kakizawa, Y.; Harada, A.; Kataoka, K. Biomacromolecules 2001, 2, 491.
(10) Oishi, M.; Nagasaki, Y.; Itaka, K.; Nishiyama, N.; Kataoka, K. J. Am.
Chem. Soc. 2005, 127, 1624.
Chem. Soc. 2005, 127, 8290. (e) Napoli, A.; Valentini, M.; Tirelli, N.; M€uller, M.;
Hubbell, J. A. Nat. Mater. 2004, 3, 183. (f) Xu, P.; Li, S.-Y.; Li, Q.; Kirk, Van E. A.;
Ren, J.; Murdoch, W. J.; Zhang, Z.; Radosz, M.; Shen, Y. Angew. Chem., Int. Ed. 2008,
47, 1260.
Langmuir 2010, 26(2), 709–715
Published on Web 07/24/2009
DOI: 10.1021/la9023844 709