10.1002/ejoc.201901883
European Journal of Organic Chemistry
COMMUNICATION
Soc. 2011, 133, 19298-19301; g) C. J. Teskey, A. Y. W. Lui, M. F.
Greaney, Angew. Chem. Int. Ed. 2015, 54, 11677-11680; h) Q. Yu, L.
Hu, Y. Wang, S. Zheng and J. Huang, Angew. Chem. Int. Ed. 2015, 54,
15284-15288; i) Z.-L. Fan, J.-B. Ni and A. Zhang, J. Am. Chem. Soc.
2016, 138, 8470-8475; j) P. Gandeepan, J. Koeller, K. Korvorapun, J.
Mohr and L. Ackermann, Angew. Chem. Int. Ed. 2019, 58, 9820-9825;
k) A. M. Clark, C. E. F. Rickard, W. R. Roper and L. J. Wright,
Organometallics. 1999, 18, 2813-2820; l) X.-G. Wang, Y.-K. Li, H.-C.
Liu, B.-S. Zhang, X.-Y. Gou, Q. Wang, J.-W. Ma and Y.-M. Liang, J. Am.
Chem. Soc. 2019, 141, 13914-13922; m) A. Sagadevan and M. F.
Greaney, Angew. Chem. Int. Ed. 2019, 58, 9931-9935; n) K.
Korvorapun, N. Kaplaneris, T. Rogge, S. Warratz, A. C. Stuckl, L.
Ackermann, ACS Catal. 2018, 8, 886-892; o) B. H. Lipshutz, S.
Ghorai, M. Cortes-Clerget, Chem. Eur. J. 2018, 24, 6672-6695; p) J.
Li, S. Warratz, D. Zell, S. D. Sarkar, E. E. Ishikawa, L. Ackermann, J.
Am. Chem. Soc. 2015, 137, 13894-13901; q) N. Hofmann, L.
Ackermann, J. Am. Chem. Soc. 2013, 135, 5877-5884.
electron transfer. Aided by ruthenium(III) and K2CO3, species B
is deprotonated to give more stable intermediate C. Finally,
ligand exchange of intermediate C with 2-phenoxypyridine gives
the final difluoroalkylation product and regenerates the active
ruthenium catalyst species for further cycling.
In conclusion, we have developed ruthenium-catalyzed meta-
selective C–H bond difluoroalkylation of 2-phenoxypyridines.
This development offers a new strategy for the preparation of 2-
(meta-difluoroalkylphenoxy)pyridine derivatives. Further studies
to expand the substrate scope and apply this difluoroalkylation
method to chemical synthesis are underway.
[8]
a) J. Kim, K. Shin, S. Jin, D. Kim, S. Chang, J. Am. Chem.
Soc. 2019, 141, 4137-4146; b) C. J. Teskey, S. M. A. Sohel, D. L.
Bunting, S. G. Modha, M. F. Greaney, Angew. Chem. Int. Ed.
2017, 56, 5263-5266; c) W. Ma, R. Mei, G. Tenti, L. Ackermann, Chem.
Eur. J. 2014, 20, 15248-15251
Acknowledgements
We gratefully acknowledge the Program of Science and
Technology Innovation Talents of Henan Province
(19HASTIT035) for providing financial support for this
work
.
Keywords: Ruthenium • C-H activation • meta-CAr–H •
Difluoroalkylation • Phenoxypyridine
[1]
[2]
J.
H.
P.
Tyman,
Synthetic
and
Natural
Phenols,
Elsevier, Amsterdam, 1996.
For representative examples, see: a) W. Song and L. Ackermann,
Angew. Chem. Int. Ed. 2012, 51, 8251-8254; b) X.-Q. Hao, L.-J. Chen,
B. Ren, L.-Y. Li, X.-Y. Yang, J.-F. Gong, J.-L. Niu and M.-P. Song, Org.
Lett. 2014, 16, 1104 -1107; c) Z. Yu, B. Ma, M. Chen, H.-H. Wu, L. Liu
and J. Zhang, J. Am. Chem. Soc. 2014, 136, 6904-6907; d) R. Zhu, J.
Wei and Z. Shi, Chem. Sci. 2013, 4, 3706-3711; e) R. Takise, K. Muto,
J. Yamaguchi and K. Itami, Angew. Chem. Int. Ed. 2014, 53, 6791-6794;
f) A. Correa and R. Martin, J. Am. Chem. Soc. 2014, 136, 7253-7256.
L. G. Wade. JR, Organic Chemistry., 7th ed.; Pearson Education, Inc:
Upper Saddle River, 2010; Chapter 17, pp 751-802.
[3]
[4] a) G. Li, P. Gao, X. Lv, C. Qu, Q. Yan, Y. Wang, S. Yang, J. Wang, Org.
Lett. 2017, 19, 2682-2685; b) G. Li, B. Zhu, X. Ma, C. Jia, X. Lv, J.
Wang, F. Zhao, Y. Lv, S. Yang, Org. Lett. 2017, 19, 5166-5169.
[5] a) L. Xing, D. C. Blakemore, A. Narayanan, R. Unwalla, F. Lovering, R. A.
Denny, H. Zhou, M. E. Bunnage, ChemMedChem 2015, 10, 715-726; b)
I. Tirotta, V. Dichiarante, C. Pigliacelli, G. Cavallo, G. Terraneo, F. B.
Bombelli, P. Metrangolo and G. Resnati, Chem. Rev. 2015, 115, 1106-
1129; c) P. Kirsch, Modern Fluoroorganic Chemistry; Wiley-VCH:
Weinheim, 2013; pp 1−24; d)T.-T. Xia, L. He, Y.-A. Liu, J. F. Hartwig
and X.-B. Liao, Org. Lett. 2017, 19, 2610-2613; e) Y. Wu, H.-R. Zhang,
Y.-X. Cao, Q. Lan and X.-S. Wang, Org. Lett. 2016, 18, 5564-5567.
[6] For representative examples, see: a) J. Hu, J. Fluorine Chem. 2009, 130,
1130-1139; b) C. Ni, M. Hu, J. Hu, Chem. Rev. 2015, 115, 765-825; c)
N. A. Meanwell, J. Med. Chem. 2011, 54, 2529-2591; d) Q. Zhou, A.
Ruffoni, R. Gianatassio, Y. Fujiwara, E. Sella, D. Shabat and P. S.
Baran, Angew. Chem. Int. Ed. 2013, 52, 3949-3952; e) H. Chen, P.-H.
Li, M. Wang and L. Wang, Org. Lett. 2016, 18, 4794-4797.
[7] For representative examples, see: a) Z. Ruan, S.-K. Zhang, C. Zhu, P. N.
Ruth, D. Stalke, L. Ackermann, Angew. Chem. Int. Ed. 2017, 56, 2045-
2049; b) Z.-Y. Li, L. Li, Q.-L. Li, K. Jing, H. Xu and G. W. Wang, Chem.
Eur. J. 2017, 23, 3285-3290; c) C.-C. Yuan, X.-L. Chen, J.-Y. Zhang
and Y.-S. Zhao, Org. Chem. Front. 2017, 4, 1867-1871; d) G. Li, D.
Li, J. Zhang, D.-Q. Shi, Y. Zhao, ACS Catal. 2017, 7, 4138-4143; e) K.
Jing, Z.-Y. Li and G.-W. Wang, ACS Catal. 2018, 8, 11875-11881; f) O.
Saidi, J. Marafie, A. E. W. Ledger, P. M. Liu, M. F. Mahon, G. Kociok-
Köhn, M. K. Whittlesey, C. G. Frost, J. Am. Chem.
3
This article is protected by copyright. All rights reserved.