atmospheric conditions, in aqueous solvents, within minutes
not hours, and is high yielding and highly regioselective.
Importantly, it does not require a Cu(I) catalyst nor an
oxygen-free environment. Thus, the solid-phase nitrile
oxide–alkyne reaction offers a valuable click alternative to
azide–alkyne chemistry for applications in oligonucleotide
bioconjugation.2
6 T. R. Chan, R. Hilgraf, K. B. Sharpless and V. V. Fokin,
Org. Lett., 2004, 6, 2853–2855.
7 (a) L. Zhang, X. G. Chen, P. Xue, H. H. Y. Sun, I. D. Williams,
K. B. Sharpless, V. V. Fokin and G. C. Jia, J. Am. Chem. Soc.,
2005, 127, 15998–15999; (b) D. Imperio, T. Pirali, U. Galli,
F. Pagliai, L. Cafici, P. L. Canonico, G. Sorba, A. A. Genazzani
and G. C. Tron, Bioorg. Med. Chem., 2007, 15, 6748–6757;
(c) S. Grecian and V. V. Fokin, Angew. Chem., Int. Ed., 2008,
47, 8285–8287.
We thank C. Batchelor, NUI Maynooth, for assistance with
MALDI-TOF mass spectral measurements. Financial support
from the Science Foundation of Ireland (Programme code
05/PICA/B838) is gratefully acknowledged.
8 J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard,
P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli and
C. R. Bertozzi, Proc. Natl. Acad. Sci. U. S. A., 2007, 104,
16793–16797.
9 R. Huisgen, in 1,3-Dipolar Cycloaddition, ed. A. Padwa, Wiley,
New York, 1984, vol. 1, pp. 1–176.
10 (a) Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis:
Novel Strategies in Synthesis, ed. H. Feuer, Wiley, New Jersey, 2nd
edn, 2008; (b) A. Hassner and K. M. L. Rai, Synthesis, 1989,
57–59.
11 F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman,
K. B. Sharpless and V. V. Fokin, J. Am. Chem. Soc., 2005, 127,
210–216.
12 E. Coutouli-Argyropoulou, P. Lianis, M. Mitakou, A. Giannoulis
and J. Nowak, Tetrahedron, 2006, 62, 1494–1501.
13 B. L. Deng, T. L. Hartman, R. W. Buckheit, C. Pannecouque,
E. De Clercq and M. Cushman, J. Med. Chem., 2006, 49,
5316–5323; T. M. V. D. Pinho e Melo, Curr. Org. Chem., 2005,
9, 925–958.
14 J. D. Toker, P. Wentworth, Y. F. Hu, K. N. Houk and
K. D. Janda, J. Am. Chem. Soc., 2000, 122, 3244–3245.
15 M. W. Reed, I. G. Panyutin, D. Hamlin, D. D. Lucas and
D. S. Wilbur, Bioconjugate Chem., 1997, 8, 238–243.
16 I. Singh, W. Hecker, A. K. Prasad, V. S. Parmar and O. Seitz,
Chem. Commun., 2002, 500–501.
Notes and references
1 (a) H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem.,
Int. Ed., 2001, 40, 2004–2021; (b) C. W. Tornoe, C. Christensen
and M. Meldal, J. Org. Chem., 2002, 67, 3057–3064.
2 Selected examples include: (a) A. Salic and T. J. Mitchison, Proc.
Natl. Acad. Sci. U. S. A., 2008, 105, 2415–2420; (b) F. Seela and
V. R. Sirivolu, Helv. Chim. Acta, 2007, 90, 535–552; (c) P. M.
E. Gramlich, S. Warncke, J. Gierlich and T. Carell, Angew. Chem.,
Int. Ed., 2008, 47, 3442–3444; (d) R. Kumar, A. El-Sagheer,
J. Tumpane, P. Lincoln, L. M. Wilhelmsson and T. Brown,
J. Am. Chem. Soc., 2007, 129, 6859–6864; (e) T. S. Seo,
Z. M. Li, H. Ruparel and J. Y. Ju, J. Org. Chem., 2003, 68,
609–612; (f) A. V. Ustinov and V. A. Korshun, Russ. Chem. Bull.,
2006, 55, 1268–1274; (g) C. Bouillon, A. Meyer, S. Vidal,
A. Jochum, Y. Chevolot, J. P. Cloarec, J. P. Praly, J. J. Vasseur
and F. Morvan, J. Org. Chem., 2006, 71, 4700–4702;
(h) A. Kiviniemi, P. Virta and H. Loennberg, Bioconjugate Chem.,
2008, 19, 1726–1734.
3 (a) E. F. V. Scriven and K. Turnbull, Chem. Rev., 1988, 88,
297–368; (b) J. P. Hagenbuch, Chimia, 2003, 57, 773–776.
4 P. Appukkuttan, W. Dehaen, V. V. Fokin and E. Van der Eycken,
Org. Lett., 2004, 6, 4223–4225.
17 N. K. Modukuru, K. J. Snow, B. S. Perrin, A. Bhambhani,
M. Duff and C. V Kumar, J. Photochem. Photobiol., A, 2006,
177, 43–54; M. D. Mosher, N. R. Natale and A. Vij,
Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1996, 52,
2513–2515.
5 V. V. Fokin, ACS Chem. Biol., 2007, 2, 775–778.
ꢁc
This journal is The Royal Society of Chemistry 2009
3278 | Chem. Commun., 2009, 3276–3278