Synthesis of New Heteroleptic Iridium(III) Complex
Kim et al.
device at different driving voltages, from 6 to 10 V, to
test the color stability; the results are shown in Figure 5.
Despite the intensity of the red emission region in the
spectrum showing a slight decrease relative to the blue
and green regions, the CIE color coordinates of the device
were not significantly changed.
5. B. D’Andrade, Nat. Photonics 1, 33 (2007).
6. H. Sasabe and J. Kido, J. Mater. Chem. C 1, 1699 (2013).
7. H. U. Kim, J.-H. Jang, W. Song, B. J. Jung, J. Y. Lee, and D.-H.
Hwang, J. Mater. Chem. C 3, 12107 (2015).
8. W. Lu, B.-X. Mi, M. C. W. Chan, Z. Hui, C.-M. Che, N. Zhu, and
S.-T. Lee, J. Am. Chem. Soc. 126, 4985 (2004).
9. M. Cocchi, D. Virgili, V. Fattori, D. L. Rochester, and J. A. G.
Williams, Adv. Funct. Mater. 17, 285 (2007).
1
1
1
0. C.-M. Che, S.-C. Chan, H.-F. Xiang, M. C. W. Chan, Y. Liu, and
Y. Wang, Chem. Commun. 1484 (2004).
1. S. Bernhard, X. Gao, G. G. Malliaras, and H. D. Abruña, Adv. Mater.
4
. CONCLUSION
In conclusion, we synthesized a (PQ) Ir(TMSppy) and
investigated its application as a red dopant in phospho-
rescent OLEDs. The luminance and external quantum
2
14, 433 (2002).
2. Y.-L. Tung, S.-W. Lee, Y. Chi, Y.-T. Tao, C.-H. Chien, Y.-M. Cheng,
P.-T. Chou, S.-M. Peng, and C.-S. Liu, J. Mater. Chem. 15, 460
(2005).
efficiency of the (PQ) Ir(TMSppy) device at 10% dop-
2
ing concentration in a red-phosphorescent OLEDs were
higher than that of the corresponding iridium(III) com-
plex containing acac. The maximum luminance and exter-
13. Y.-L. Tung, S.-W. Lee, Y. Chi, L.-S. Chen, C.-F. Shu, F.-I. Wu, A. J.
Carty, P.-T. Chou, S.-M. Peng, and G.-H. Lee, Adv. Mater. 17, 1059
(2005).
1
4. C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo,
M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 79, 2082
(2001).
nal quantum efficiency of the device fabricated using
2
(
PQ) Ir(TMSppy) were 29,092 cd/m and 15.5%, respec-
2
tively. The improved luminance and quantum efficiency for
PQ) Ir(TMSppy) were attributed to TMSppy in the irid-
15. T. Tsuzuki, N. Shirasawa, T. Suzuki, and S. Tokito, Adv. Mater.
5, 1455 (2003).
1
(
2
1
6. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee,
C. Adachi, P. E. Burrows, S. R. Forrest, and M. E. Thompson, J. Am.
Chem. Soc. 123, 4304 (2001).
ium(III) complex, because the sterically bulky substituent
could effectively reduce concentration self-quenching and
triplet–triplet annihilation at high doping concentrations.
17. H. U. Kim, J.-H. Jang, F. Xu, J. Y. Lee, and D.-H. Hwang,
J. Nanosci. Nanotechnol. 16, 2773 (2016).
2
Also, the EQEmax and EQE at a luminance of 1,000 cd/m
1
8. J.-H. Jang, M. J. Kim, H. U. Kim, S. B. Lee, J. Lee, and D.-H.
Hwang, J. Nanosci. Nanotechnol. 16, 8580 (2016).
9. C.-H. Yang, C.-C. Tai, and I.-W. Sun, J. Mater. Chem. 14, 947
(2004).
in the WOLED with (PQ) Ir(TMSppy) were 18.1 and
2
1
7.4%, respectively. The EQE curves of the WOLED with
1
(
PQ) Ir(TMSppy) showed a low efficiency roll-off with
2
increasing luminance. Therefore, TMSppy is a good can-
20. S. Reineke, G. Schwartz, K. Walzer, M. Falke, and K. Leo, Appl.
IP: 93.179.90.191 On: Mon, 23 Apr 2018 21:08:37
didate as a ancillary ligand for hete Cr ool ep py tri icg hi rt :i d Ai umm e( rI iIcI a) n ScienPthifyisc. LPeutt .b 9l i4s, h1 e6 3r 3s 05 (2009).
21. M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10967
complexes.
Delivered by Ingenta
(2000).
2
2. H. Z. Xie, M. W. Liu, O. Y. Wang, X. H. Zhang, C. S. Lee, L. S.
Hung, S. T. Lee, P. F. Teng, H. L. Kwong, H. Zheng, and C. M.
Che, Adv. Mater. 13, 1245 (2001).
Acknowledgment: This research was supported by
the Ministry of Trade, Industry and Energy (MOTIE,
Korea) under Industrial Technology Innovation Program.
No. 10067715 and a National Research Foundation
23. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and
S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999).
24. X. Ren, M. E. Kondakova, D. J. Giesen, M. Rajeswaran,
M. Madaras, and W. C. Lenhart, Inorg. Chem. 49, 1301
(
NRF) grants funded by the Korean Government (NRF-
014R1A2A2A01007318).
2
(
2010).
5. A. S. Ionkin, W. J. Marshall, D. C. Roe, and Y. Wang, Dalton Trans.
468 (2006).
2
2
References and Notes
26. D. H. Kim, N. S. Cho, H.-Y. Oh, J. H. Yang, W. S. Jeon,
J. S. Park, M. C. Suh, and J. H. Kwon, Adv. Mater. 23, 2721
(2011).
27. Gaussian 09, Gaussian, Inc., Wallingford, CT (2009).
28. J. Park, H. Oh, S. Oh, J. Kim, H. J. Park, O. Y. Kim, J. Y. Lee, and
Y. Kang, Org. Electron. 14, 3228 (2013).
1
. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E.
Thompson, and S. R. Forrest, Nature 395, 151 (1998).
. S. R. Forrest, Nature 428, 911 (2004).
2
3
4
. J. Y. Lee, J. Inf. Disp. 15, 139 (2014).
. T.-H. Han, S.-H. Jeong, Y. Lee, H.-K. Seo, S.-J. Kwon, M.-H. Park,
and T.-W. Lee, J. Inf. Disp. 16, 71 (2015).
29. K. S. Yook and J. Y. Lee, Org. Electron. 12, 1293 (2011).
Received: 27 May 2016. Accepted: 27 August 2016.
5592
J. Nanosci. Nanotechnol. 17, 5587–5592, 2017