J . Org. Chem. 1996, 61, 5169-5171
5169
Solid -P h a se Su zu k i Cou p lin g for C-C Bon d
Sch em e 1
F or m a tion
J oseph W. Guiles,* Sigmond G. J ohnson, and
William V. Murray
The R. W. J ohnson Pharmaceutical Research Institute, 1000
Route 202, P.O. Box 300, Raritan, New J ersey 08869
Received March 1, 1996
In tr od u ction
Methods describing the use of polymer supports for
performing chemical reactions in a heterogeneous me-
1
,2
dium are enjoying a pronounced resurgence.
This
renewed interest has been sparked by the combinatorial
synthesis of pharmaceutically interesting compounds.3
Newly emerging solid phase synthesis techniques for the
formation of nonpeptidic C-C bonds include 1,3-cycload-
4
5
ditions, palladium-catalyzed couplings, Mitsonubu cou-
pling,6 enolate alkylation,7 and reductive amination.8
Optimization of these reactions is central for performing
multiple simultaneous syntheses in the generation of
compound libraries. Additionally, performing chemistry
in an automated fashion may place restrictions on
temperature and pressure. Palladium-catalyzed coupling
Ta ble 1. P olym er Bou n d Bip h en yl Cou p lin g a t Room
Tem p er a tu r e
b
conversion
(% yield )
c
time
(h)
entry
ArI
catalysta
of biphenyl
via Stille or Suzuki reactions are powerful methods for
1
2
3
4
5
6
7
8
3-I
3-I
3-I
4-I
3-I
2-I
3-I
3-I
PdCl2(dppf)
18
18
20
18
18
18
2
0
0
C-C bond formation.9 These reactions generally result
NiCl (dppp)
2
Pd2(dba)3
100 (84)
100 (72)
100 (56)
57 (N.A.)
20 (N.A.)
72 (N.A.)
in excellent yields when performed at temperatures of
Pd2(dba)3
Pd(PPh3)4
Pd(PPh3)4
Pd2(dba)3
Pd2(dba)3
5
0-80 °C. Adapting these powerful C-C coupling reac-
d
5
a,c,7,10
tions to a resin mounted procedure is of interest.
Reported herein are the results from our study on the
generality of the solid-phase Suzuki reaction.
6
a
-10 mol %, 2 equiv of K2CO3 in DMF. b Conversion estimated
5
from 1H NMR and HPLC. c Isolated yield based on loading of
Discu ssion
d
iodobenzoic acid (mmol/g resin). 2% H2O-DMF.
The central objective for performing our chemistry on
a solid support was to identify a general set of conditions
that allows for complete conversion to product, over a
wide range of substrates. Commercially available resins
(SASRIN11 or Wang12 ) 1 were coupled with an iodo-
benzoic acid such as 2 via standard protocol with
1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide, EDCI,
and 1-hydroxybenzotriazole, HOBT, to provide resin 3
(Scheme 1).
Numerous catalysts were investigated to effect the
coupling of 3 with phenylboronic acid 4, at room tem-
perature (Table 1). Commercial Pd(0) sources, tris-
(
1) (a) Merrifield, R. B. J . Am. Chem. Soc. 1963, 85, 2149. (b) Leznoff,
C. C. Acc. Chem. Res. 1978, 11, 327.
2) (a) DeWitt, S. H.; Kiely, J . S; Stankovic, C. J .; Schroeder, M. C.;
Cody, D. M. R.; Pavia, M. R. Proc. Natl. Acad. Sci. U.S.A. 1993, 90,
(
6
1
5
3
909. (b) Bunin, B. A.; Ellman, J . A. J . Am. Chem. Soc. 1992, 114,
0997. (c) Moon, H.; Schore, N. E.; Kurth, M. J . J . Org. Chem. 1992,
7, 6088. (d) Hutchins, S. M.; Chapman, K. T. Tetrahedron Lett. 1994,
5, 4055. (e) Ahlberg R. L. A.; Miller, R. B.; J ones, A. D.; Kurth, M. J .
(dibenzylideneacetone)dipalladium {Pd
2
3
(dba) } or tetrakis-
(
triphenylphosphine)palladium {Pd(PPh )
3 4
} were found
J . Am. Chem. Soc. 1994, 116, 2661.
3) (a) Houghten, R. A.; Pinilla, C.; Blondelle, S. E.; Appel, J . R.;
Dooley, C. T.; Cuervo, J . H. Nature 1991, 354, 84. (b) Gallop, M. A.;
Barret, R. W.; Dower, W. J .; Fodor, S. P. A.; Gordon, E. M. J . Med.
Chem. 1994, 37, 1233. (c) Gordon, E. M.; Barret, R. W.; Dower, W. J .;
Fodor, S. P. A.; Gallop, M. A. J . Med. Chem. 1994, 37, 1385.
to be very effective catalysts. Whereas, Pd(II) or Ni(II)
catatlysts such as [1,1′-bis(diphenylphosphino)ferrocene]-
(
palladium chloride, {PdCl
nylphosphino)propane]nickel chloride {NiCl
2
(dppf)} and [1,1′-bis(diphe-
(dppp)} were
2
ineffective. At room temperature the couplings were
found to proceed at a modest rate, requiring approxi-
mately 18 h for completion (entry 3 vs 7, 8). The coupling
of o-iodobenzoate was noticeably slower than its meta or
para congeners, perhaps as a response to steric crowding
(
4) (a) Beebe, X.; Schore, N. E.; Kurth, M. J . J . Am. Chem. Soc. 1992,
14, 10061. (b) Pei, Y.; Moos, W. H. Tetrahedron Lett. 1994, 35, 5825.
c) Murphy, M. M.; Schullek, J . R.; Gordon, E. M.; Gallop, M. A. J .
Am. Chem. Soc. 1995, 117, 7029.
5) (a) Deshpande, M. S. Tetrahedron Lett. 1994, 35, 5613. (b) Yu,
K.-L., Deshpande, M. S.; Vyas, D. M. Tetrahedron Lett. 1994, 35, 8919.
c) Sucholeiki, I.; Forman, F. W. J . Org. Chem. 1995, 60, 523. (d)
1
(
(
(
(entry 6). The bromo-substituted benzoate analogs were
Plunkett M. J .; Ellman, J . A. J . Am. Chem. Soc. 1995, 117, 3306. (e)
Hiroshige, M.; Hauske, J . R.; Zhou, P. Tetrahedron Lett. 1995, 36, 4567.
found to be completely unreactive under similar reaction
conditions. The benzoate is cleaved from the polymer
support with dilute trifluoroacetic acid in 30 min provid-
ing the biaryl acid product 5. The purity of the cleaved
(
f) Goff, D. A.; Zuckermann, R. N. J . Org. Chem. 1995, 60, 5748.
6) Krchnak, V.; Flegelova, Z.; Weichsel, S. A.; Lebl, M. Tetrahedron
Lett. 1995, 36, 6193.
(
(
(
7) Ellman, J . A.; Backes, B. J . J . Am. Chem. Soc. 1994, 116, 11171.
8) Steele, J .; Gordon, D. W.; Bioorg. Med. Chem. Lett. 1995, 5, 47.
1
biaryl products was verified by HPLC and H NMR and
Bray, A. M.; Chiefari, D. S.; Valerio, R. M.; Maeji, N. J . Bioorg. Med.
Chem. Lett. 1995, 5, 5081.
routinely found to be >95%. The isolated yields were
(
9) (a) Stille, J . K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. (b)
Suzuki, A. Pure Appl. Chem. 1985, 57, 1749.
10) (a) Reference 7. (b) Friesen, R. W.; Frenette, R. W. Tetrahedron
Lett. 1994, 35, 9177.
(11) Mergler, M.; Tanner, R.; Gosteli, J .; Grogg, P. Tetrahedron Lett.
1988, 29, 4005.
(12) Wang, S.-S. J . Am. Chem. Soc. 1973, 95, 1328.
(
S0022-3263(96)00430-6 CCC: $12.00 © 1996 American Chemical Society