Biochemistry
REFERENCES
Article
(20) Hieta, R., Kukkola, L., Permi, P., Pirila, P., Kivirikko, K. I.,
Kilpelainen, I., and Myllyharju, J. (2003) The peptide-substrate
binding domain of human collagen prolyl 4-hydroxylases. Backbone
assignments, secondary structure, and binding of proline-rich peptides.
J. Biol. Chem. 278, 34966−34974.
̈
■
̈
(1) Shoulders, M. D., and Raines, R. T. (2009) Collagen structure
and stability. Annu. Rev. Biochem. 78, 929−958.
(2) Rosenbloom, J., Castro, S. V., and Jimenez, S. A. (2010) Narrative
review: Fibrotic diseases: Cellular and molecular mechanisms and
novel therapies. Ann. Intern. Med. 152, 159−166.
(21) Pekkala, M., Hieta, R., Bergmann, U., Kivirikko, K. I., Wierenga,
R. K., and Myllyharju, J. (2004) The peptide-substrate-binding domain
of collagen prolyl 4-hydroxylase is a tetratricopeptide repeat domain
with functional aromatic residues. J. Biol. Chem. 279, 52255−52261.
(22) Anantharajan, J., Koski, M. K., Kursula, P., Hieta, R., Bergmann,
U., Myllyharju, J., and Wierenga, R. K. (2013) The structural motifs for
substrate binding and dimerization of the α subunit of collagen prolyl
4-hydroxylase. Structure 21, 2107−2118.
(23) Hanauske-Abel, H. M. (1991) Prolyl 4-hydroxylase, a target
enzyme for drug development. Design of suppressive agents and the in
vitro effect of inhibitors and proinhibitors. J. Hepatol. 13 (Suppl. 3),
S8−S16.
(24) Friedman, S. L., Sheppard, D., Duffield, J. S., and Violette, S.
(2013) Therapy for fibrotic diseases: Nearing the starting line. Sci.
Transl. Med. 5, 167sr1.
(3) Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Knittel, J. G., Yan,
L., Rueden, C. T., White, J. G., and Keely, P. J. (2008) Collagen
density promotes mammary tumor initiation and progression. BMC
Med. 6, 11.
(4) Conklin, M. W., Eickhoff, J. C., Riching, K. M., Pehlke, C. A.,
Eliceiri, K. W., Provenzano, P. P., Friedl, A., and Keely, P. J. (2011)
Aligned collagen is a prognostic signature for survival in human breast
carcinoma. Am. J. Pathol. 178, 1221−1232.
(5) Eisinger-Mathason, T. S., Zhang, M., Qiu, Q., Skuli, N.,
Nakazawa, M. S., Karakasheva, T., Mucaj, V., Shay, J. E. S.,
́
Stangenberg, L., Sadri, N., Pure, E., Yoon, S. S., Kirsch, D. G., and
Simon, M. C. (2013) Hypoxia-dependent modification of collagen
networks promotes sarcoma metastasis. Cancer Discovery 3, 1190−
1205.
(25) Rose, N. R., Mcdonough, M. A., King, O. N. F., Kawamura, A.,
and Schofield, C. J. (2011) Inhibition of 2-oxoglutarate dependent
oxygenases. Chem. Soc. Rev. 40, 4364−4397.
(26) Vasta, J. D., Higgin, J. J., Kersteen, E. A., and Raines, R. T.
(2013) Bioavailable affinity label for collagen prolyl 4-hydroxylase.
Bioorg. Med. Chem. 21, 3597−3601.
(27) Vasta, J. D., and Raines, R. T. (2015) Selective inhibition of
prolyl 4-hydroxylases by bipyridinedicarboxylates. Bioorg. Med. Chem.
23, 3081−3090.
(28) Vasta, J. D., Andersen, K. A., Deck, K. M., Nizzi, C. P.,
Eisenstein, R. S., and Raines, R. T. (2016) Selective inhibition of
collagen prolyl 4-hydroxylase in human cells. ACS Chem. Biol. 11,
193−199.
(29) Gorres, K. L., Pua, K. H., and Raines, R. T. (2009) Stringency of
the 2-His-1-Asp active-site motif in prolyl 4-hydroxylase. PLoS One 4,
e7635.
(30) Tandon, M., Wu, M., Begley, T. P., Myllyharju, J., Pirskanen, A.,
and Kivirikko, K. (1998) Substrate specificity of human prolyl-4-
hydroxylase. Bioorg. Med. Chem. Lett. 8, 1139−1144.
(31) Wu, M., Moon, H.-S., Begley, T. P., Myllyharju, J., and Kivirikko,
K. I. (1999) Mechanism-based inactivation of the human prolyl-4-
hydroxylase by 5-oxaproline-containing peptides: Evidence for a prolyl
radical intermediate. J. Am. Chem. Soc. 121, 587−588.
(32) Gorres, K. L., Edupuganti, R., Krow, G. R., and Raines, R. T.
(2008) Conformational preferences of substrates for human prolyl 4-
hydroxylase. Biochemistry 47, 9447−9455.
(33) Gorres, K. L., and Raines, R. T. (2009) Direct and continuous
assay for prolyl 4-hydroxylase. Anal. Biochem. 386, 181−185.
(34) Fischer, G. (2000) Chemical aspects of peptide bond
isomerisation. Chem. Soc. Rev. 29, 119−127.
(35) Rapaka, R. S., Renugopalakrishnan, V., Urry, D. W., and
Bhatnagar, R. S. (1978) Hydroxylation of proline in polytripeptide
models of collagen: Stereochemistry of polytripeptide−prolyl hydrox-
ylase interaction. Biochemistry 17, 2892−2989.
(36) Brahmachari, S. K., and Ananthanarayanan, V. S. (1979) β-
Turns in nascent procollagen are sites of posttranslational enzymatic
hydroxylation of proline. Proc. Natl. Acad. Sci. U. S. A. 76, 5119−5123.
(37) Atreya, P. L., and Ananthanarayanan, V. S. (1991) Interaction of
prolyl 4-hydroxylase with synthetic peptide substrates. J. Biol. Chem.
266, 2852−2858.
(38) Chou, P. Y., and Fasman, G. D. (1977) β-Turns in proteins. J.
Mol. Biol. 115, 135−175.
(39) Choudhary, A., and Raines, R. T. (2011) An evaluation of
peptide-bond isosteres. ChemBioChem 12, 1801−1807.
(40) Keskiaho, K., Hieta, R., Sormunen, R., and Myllyharju, J. (2007)
Chlamydomonas reinhardtii has multiple prolyl 4-hydroxylases, one of
which is essential for proper cell wall assembly. Plant Cell 19, 256−269.
(6) Gilkes, D. M., Chaturvedi, P., Bajpai, S., Wong, C. C., Wei, H.,
Pitcairn, S., Hubbi, M. E., Wirtz, D., and Semenza, G. L. (2013)
Collagen prolyl hydroxylases are essential for breast cancer metastasis.
Cancer Res. 73, 3285−3296.
(7) Cox, T. R., Bird, D., Baker, A.-M., Barker, H. E., Ho, M. W.-Y.,
Lang, G., and Erler, J. T. (2013) Lox-mediated collagen crosslinking is
responsible for fibrosis-enhanced metastasis. Cancer Res. 73, 1721−
1732.
(8) Myllyharju, J., and Kivirikko, K. I. (2004) Collagens, modifying
enzymes and their mutations in humans, flies and worms. Trends
Genet. 20, 33−43.
(9) Gorres, K. L., and Raines, R. T. (2010) Prolyl-4-hydroxylase. Crit.
Rev. Biochem. Mol. Biol. 45, 106−124.
(10) Berg, R. A., and Prockop, D. J. (1973) The thermal transition of
a non-hydroxylated form of collagen. Evidence for a role for
hydroxyproline in stabilizing the triple helix of collagen. Biochem.
Biophys. Res. Commun. 52, 115−120.
(11) Winter, A. D., and Page, A. P. (2000) Prolyl 4-hydroxylase is an
essential procollagen-modifying enzyme required for exoskeleton
formation and the maintenance of body shape in the nematode
Caenorhabditis elegans. Mol. Cell. Biol. 20, 4084−4093.
(12) Friedman, L., Higgin, J. J., Moulder, G., Barstead, R., Raines, R.
T., and Kimble, J. (2000) Prolyl 4-hydroxylase is required for viability
and morphogenesis in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S.
A. 97, 4736−4741.
(13) Holster, T., Pakkanen, O., Soininen, R., Sormunen, R.,
Nokelainen, M., Kivirikko, K. I., and Myllyharju, J. (2007) Loss of
assembly of the main basement membrane collagen, Type IV, but not
fibril-forming collagens and embryonic death in collagen prolyl 4-
hydroxylase I null mice. J. Biol. Chem. 282, 2512−2519.
(14) Myllyharju, J. (2008) Prolyl 4-hydroxylases, key enzymes in the
synthesis of collagens and regulation of the response to hypoxia, and
their roles as treatment targets. Ann. Med. 40, 402−417.
(15) Hanauske-Abel, H. M., and Gunzler, V. (1982) A stereochemical
̈
concept for the catalytic mechanism of prolylhydroxylase: Applicability
to classification and design of inhibitors. J. Theor. Biol. 94, 421−455.
(16) Hausinger, R. P. (2004) Fe(II)/α-ketoglutarate-dependent
hydroxylases and related enzymes. Crit. Rev. Biochem. Mol. Biol. 39,
21−68.
(17) Costas, M., Mehn, M. P., Jensen, M. P., and Que, L. J. (2004)
Dioxygen activation at mononuclear nonheme iron active sites:
Enzymes, models, and intermediates. Chem. Rev. 104, 939−986.
(18) Groves, J. T., and McClusky, G. A. (1976) Aliphatic
hydroxylation via oxygen rebound. Oxygen transfer catalyzed by
iron. J. Am. Chem. Soc. 98, 859−861.
(19) Abraham, R. J., and McLauchlan, K. A. (1962) The proton
resonance spectra and conformations of the prolines. Part I. Mol. Phys.
5, 195−203.
226
Biochemistry 2017, 56, 219−227