2194
J. Am. Chem. Soc. 1998, 120, 2194-2195
Scheme 1. Synthesis of Phosphoramidites 6a and 6ba,b
Metal-Containing Oligonucleotides: Solid-Phase
Synthesis and Luminescence Properties
Dennis J. Hurley and Yitzhak Tor*
Department of Chemistry and Biochemistry
UniVersity of California, San Diego
La Jolla, California 92093-0358
ReceiVed NoVember 24, 1997
The incorporation of photo- and redox-active transition metal
ions into oligonucleotides is a key design target for the study of
energy and electron-transfer processes through DNA,1 as well as
the development of DNA hybridization probes and sensors.2
Metal-containing oligonucleotides have been predominantly con-
structed via two major pathways: (a) the synthesis of a chelator-
containing oligonucleotide followed by metal complexation3 and
(b) the synthesis of an end-functionalized oligonucleotide to which
a metal complex can be conjugated.1,4 These approaches are
restricted primarily to modifications at the oligonucleotides’
termini and/or require the exposure of oligonucleotides to reactive
metal precursors.2-5 A direct method for the site-specific
incorporation of metal complexes during solid-phase oligonucleo-
tide synthesis has never been reported.
We now disclose a general methodology for the incorporation
of polypyridine metal complexes into oligonucleotides using
automated DNA synthesizers. We report the synthesis of novel
RuII- and OsII-containing nucleosides and their phosphoramidite
derivatives. These building blocks are sequence-specifically
incorporated into oligonucleotides in high yields using standard
solid-phase phosphoramidite chemistry. The uniquely modified
oligonucleotides form stable DNA duplexes and are useful probes
for the study of energy-transfer processes in nucleic acids.
We have previously reported that functionalized tris-chelate
complexes are excellent substrates for the powerful palladium-
mediated cross-coupling methodologies.6 This approach provides
a convenient entry into metal-containing nucleosides and is key
a Reagents: (a) 4,4′-dimethoxytrityl chloride (DMT-Cl), DMAP,
pyridine, Et3N, 92% yield; (b) 3a or 3b, (Ph3P)2PdCl2, CuI, DMF, Et3N,
sonication, 84% yield; (c) (iPr2N)2POCH2CH2CN, (1H)-tetrazole, CH3CN;
70-85% yield. b All metal-modified nucleosides were isolated as their
-
PF6 salts.8
to the successful preparation of the modified nucleosides and their
phosphoramidites. Thus, palladium-catalyzed cross-coupling
reactions between 5-ethynyldeoxyuridine7 (1) and [(bpy)2Ru(3-
bromo-1,10-phenanthroline)]2+(PF6-)2 (3a) or [(bpy)2Os(3-bromo-
-
1,10-phenanthroline)]2+(PF6
) (bpy ) bipyridyl) (3b) afford
2
nucleosides 4a and 4b, respectively (Scheme 1).8,9 The mild
conditions of this reaction allow us to apply it for the modification
of 4,4′-dimethoxytrityl-protected nucleosides. Thus, 1 is first
treated with 4,4′-dimethoxytrityl (DMT) chloride in the presence
of 4-(dimethylamino)pyridine (DMAP) to provide the DMT-
protected nucleoside 2, which is then cross-coupled to 3a or 3b
to afford the protected metal-containing nucleosides 5a and 5b,
respectively (Scheme 1). Phosphitylation of the protected nucleo-
sides 5a and 5b using (2-cyanoethoxy)bis(diisopropylamino)-
phosphine in the presence of (1H)-tetrazole provides the corre-
sponding metal-modified phosphoramidites 6a and 6b.10
(1) Murphy, C. J.; Arkin, M. R.; Jenkins, Y.; Ghatlia, N. D.; Bossmann,
S. H.; Turro, N. J.; Barton, J. K. Science 1993, 262, 1025-1029. Meade, T.
J.; Kayyem, J. F. Angew. Chem., Int. Ed. Engl. 1995, 34, 352-354. Dandliker,
P. J.; Holmlin, R. E.; Barton, J. K. Science 1997, 275, 1465-1468. Meggers,
E.; Kusch, D.; Giese, B. HelV. Chim. Acta 1997, 80, 640-652. See also:
Netzel, T. L. J. Chem. Educ. 1997, 74, 646-651. Diederichsen, U. Angew.
Chem., Int. Ed. Engl. 1997, 36, 2317-2319.
(2) (a) Bannwarth, W.; Schmidt, D.; Stallard, R. L.; Hornung, C.; Knorr,
R.; Mu¨ller, F. HelV. Chem. Acta 1988, 71, 2085-2099. (b) Bannwarth, W.;
Schmidt, D. Tetrahedron Lett. 1989, 30, 1513-1516. (c) Bannwarth, W.;
Pfleiderer, W.; Mu¨ller, F. HelV. Chim. Acta 1991, 74, 1991-1999. (d) Telser,
J.; Cruickshank, K. A.; Schanze, K. S.; Netzel, T. L. J. Am. Chem. Soc. 1989,
111, 7221-7226. (e) Sammes, P. G.; Yahioglu, G. Nat. Prod. Rep. 1996, 13,
1-28. (f) Ihara, T.; Nakayama, M.; Murata, M.; Nakano, K.; Maeda, M. Chem.
Commun. 1997, 1609-1610.
(3) Bashkin, J. K.; Frolova, E. I.; Sampath, U. J. Am. Chem. Soc. 1994,
116, 5981-5982. Matsumura, K.; Endo, M.; Komiyama, M. J. Chem. Soc.,
Chem. Commun. 1994, 2019-2020. Dreyer, G. R.; Dervan, P. B. Proc. Natl.
Acad. Sci. U.S.A. 1985, 82, 968-972. Chen, C.-H. B.; Sigman, D. S. J. Am.
Chem. Soc. 1988, 110, 6570-6572.
(4) Magda, D.; Miller, R. A.; Sessler, J. L.; Iverson, B. L. J. Am. Chem.
Soc. 1994, 116, 7439-7440. Hall, J.; Hu¨sken, D.; Pieles, U.; Moser, H. E.;
Ha¨ner, R. Chem. Biol. 1994, 1, 185-190. Hall, J.; Hu¨sken, D.; Ha¨ner, R.
Nucleic Acids Res. 1996, 24, 3522-3526.
Target 20-mer oligonucleotides incorporating one or two metal-
modified 2′-deoxyuridine bases at various positions were syn-
thesized on a 0.2 µmol scale using an automated DNA synthesizer
(Figure 1). When coupling times for the phosphoramidites 6a
and 6b in 0.5 M (1H)-tetrazole were extended to 5 min, reaction
efficiencies were greater than 90%.11 Removal of the finished
20-mers from the solid support using concentrated ammonium
hydroxide was followed by incubation at 55 °C for 8 h to afford
(7) Robins, M. J.; Barr, P. J. J. Org. Chem. 1983, 48, 1854-1862.
(8) See the Supporting Information for experimental details.
(9) Polypyridine complexes of RuII and OsII were selected due to their
chemical stability and favorable redox and photophysical characteristics.
See: Sauvage, J.-P.; Collin, J.-P.; Chambron, J.-C.; Guillerez, S.; Coudret,
C.; Balzani, V.; Barigelletti, F.; De Cola, L.; Flamigni, L. Chem. ReV. 1994,
94, 993-1019. Balzani, V.; Juris, A.; Venturi, M.; Campagna, S.; Serroni, S.
Chem. ReV. 1996, 96, 759-833.
(5) For recent approaches utilizing metal-containing phosphoramidites or
H-phosphonates, see: ref 2b. Manchanda, R.; Dunham, S. U.; Lippard, S. J.
J. Am. Chem. Soc. 1996, 118, 5144-5145. Schliepe, J.; Berghoff, U.; Lippert,
B.; Cech, D. Angew. Chem., Int. Ed. Engl. 1996, 35, 646-648. Mucic, R. C.;
Herrlien, M. K.; Mirkin, C. A.; Letsinger, R. L. Chem. Commun. 1996, 555-
557. Magda, D.; Crofts, S.; Lin, A.; Miles, D.; Wright, M.; Sessler, J. L. J.
Am. Chem. Soc. 1997, 119, 2293-2294. For a photoaddition of RuII complex
to DNA, see: Jacquet, L.; Davis, R. J. H.; Kirsch-De Mesmaeker, A.; Kelly,
J. M. J. Am. Chem. Soc. 1997, 119, 11763-11768.
(10) All compounds were characterized by 1H NMR, ESI-MS, UV-vis,
IR and square-wave and cyclic voltammetry. See the Supporting Information.
(11) To control the amount of reagents and reaction time, the coupling of
the modified bases was performed manually (ref 8). The decreased coupling
efficiencies relative to standard phosphoramidites are likely due to the steric
bulk of the appended metal complex and have been reported with other bulky
phosphoramidites. See: Kobertz, W. R.; Essigmann, J. M. J. Am. Chem. Soc.
1997, 119, 5960-5961.
(6) Tzalis, D.; Tor, Y. Chem. Commun. 1996, 1043-1044. Tzalis, D.; Tor,
Y. J. Am. Chem. Soc. 1997, 119, 852-853. Connors, P. J., Jr.; Tzalis, D.;
Dunnick, A. L.; Tor, Y. Inorg. Chem. In press.
S0002-7863(97)03999-1 CCC: $15.00 © 1998 American Chemical Society
Published on Web 02/24/1998