Organic Letters
Letter
(7) Ito, J.-i.; Kitase, M.; Nishiyama, H. Cross-Coupling of Alkynes
Catalyzed by Phebox-Rhodium Acetate Complexes. Organometallics
2007, 26, 6412−6417.
Notes
The authors declare no competing financial interest.
(8) (a) Jun, C.-H.; Lu, Z.; Crabtree, R. H. Catalytic Head-to-Head
Alkyne Dimerizitbn to give Z-Enynes. Tetrahedron Lett. 1992, 33,
7119−7120. (b) Katayama, H.; Yari, H.; Tanaka, M.; Ozawa, F. (Z)-
Selective cross-dimerization of arylacetylenes with silylacetylenes
catalyzed by vinylideneruthenium complexes. Chem. Commun. 2005,
4336−4338.
(9) Hilt, G.; Hess, W.; Vogler, T.; Hengst, C. Ligand and solvent
effects on cobalt(I)-catalysed reactions: Alkyne dimerisation versus [2
+ 2+2]-cyclotrimerisation versus Diels−Alder reaction versus [4 +
2+2]-cycloaddition. J. Organomet. Chem. 2005, 690, 5170−5181.
(10) Midya, G. C.; Paladhi, S.; Dhara, K.; Dash, J. Iron catalyzed
highly regioselective dimerization of terminal aryl alkynes. Chem.
Commun. 2011, 47, 6698−6700.
(11) Trost, B. M.; Sorum, M. T.; Chan, C.; Ruhter, G. Palladium-
̈
Catalyzed Additions of Terminal Alkynes to Acceptor Alkynes. J. Am.
Chem. Soc. 1997, 119, 698−708.
(12) Matsuyama, N.; Tsurugi, H.; Satoh, T.; Miura, M. Ligand-
Controlled Cross-Dimerization and -Trimerization of Alkynes under
Nickel Catalysis. Adv. Synth. Catal. 2008, 350, 2274−2278.
(13) (a) Ohshita, J.; Furumori, K.; Matsuguchi, A.; Ishikawa, M.
Synthesis and Reactions of (E)-1,4-Bis(silyl)-SubstituteEd nynes. J.
Org. Chem. 1990, 55, 3277−3280. (b) Boese, W. T.; Goldman, A. S.
Insert ion of Acetylenes into Carbon-Hydrogen Bonds Catalyzed by
Rhodium-Trimethylphosphine Complexes. Organometallics 1991, 10,
782−786. (c) Xu, H.-D.; Zhang, R. W.; Li, X.; Huang, S.; Tang, W.;
Hu, W.-H. Rhodium-Catalyzed Chemo- and Regioselective Cross-
Dimerization of Two Terminal Alkynes. Org. Lett. 2013, 15, 840−843.
(d) Azpiroz, R.; Rubio-Perez, L.; Castarlenas, R.; Perez-Torrente, J. J.;
Oro, L. A. gem-Selective Cross-Dimerization and Cross-Trimerization
of Alkynes with Silylacetylenes Promoted by a Rhodium−Pyridine−
N-Heterocyclic Carbene Catalyst. ChemCatChem 2014, 6, 2587−
2592.
(14) (a) Akita, M.; Yasuda, H.; Nakamura, A. Regioselective Homo-
and Codimerization of 1-Alkynes Leading to 2,4-Disubstituted 1-
Buten-3-ynes by Catalysis of a (η5-C5Me5)2TiCl2/RMgX system. Bull.
Chem. Soc. Jpn. 1984, 57, 480−487. (b) Oshovsky, G. V.; Hessen, B.;
Reek, J. N. H. B.; Bruin, B. de. Electronic Selectivity Tuning in
Titanium(III)-Catalyzed Acetylene Cross-Dimerization Reactions.
Organometallics 2011, 30, 6067−6070.
(15) (a) Sabourin, E. T. The selective head-to-tail dimerization of α-
hydroxy terminal acetylenes. J. Mol. Catal. 1984, 26, 363−373.
(b) Trost, B. M.; Chan, C.; Ruhter, G. Metal-Mediated Approach to
̈
Enynes. J. Am. Chem. Soc. 1987, 109, 3486−3487. (c) Chen, T.; Guo,
C.; Goto, M.; Han, L.-B. A Brønsted acid-catalyzed generation of
palladiumcomplexes: efficient head-to-tail dimerization of alkynes.
Chem. Commun. 2013, 49, 7498−7500. (d) Tsukada, N.; Ninomiya,
S.; Aoyama, Y.; Inoue, Y. Palladium-Catalyzed Selective Cross-
Addition of Triisopropylsilylacetylene to Internal and Terminal
Unactivated Alkynes. Org. Lett. 2007, 9, 2919−2921. (e) Tsukada,
N.; Ninomiya, S.; Aoyama, Y.; Inoue, Y. Palladium-catalyzed cross-
addition of triisopropylsilylacetylene to unactivated alkynes. Pure
Appl. Chem. 2008, 80, 1161−1166.
(16) (a) Moon, J.; Jeong, M.; Nam, H.; Ju, J.; Moon, J. H.; Jung, H.
M.; Lee, S. One-Pot Synthesis of Diarylalkynes Using Palladium-
Catalyzed Sonogashira Reaction and Decarboxylative Coupling of sp
Carbon and sp2 Carbon. Org. Lett. 2008, 10, 945−948. (b) Park, K.;
Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S. Synthesis of
Symmetrical and Unsymmetrical Diarylalkynes from Propiolic Acid
Using Palladium-Catalyzed Decarboxylative Coupling. J. Org. Chem.
2010, 75, 6244−9251. (c) Park, K.; Lee, S. Transition metal-catalyzed
decarboxylative coupling reactions of alkynyl carboxylic acids. RSC
Adv. 2013, 3, 14165−14182.
ACKNOWLEDGMENTS
■
This research was supported by National Research Foundation
of Korea (NRF) grants funded by the Korean government
( M S I P ) ( N R F - 2 0 1 2 M 3 A 7 B 4 0 4 9 6 5 5 , N R F -
2015R1A4A1041036, and NRF-2017R1A2B2002929). Y.X.
acknowledges financial support from NSFC (21873074 and
21572163). The spectral and HRMS data were obtained from
the Korea Basic Science Institute, Gwangju center, and Daegu
center.
REFERENCES
■
(1) (a) Goldberg, I. H. Mechanism of Neocarzinostatin Action: Role
of DNA Microstructure in Determination of Chemistry of Bistranded
Oxidative Damage. Acc. Chem. Res. 1991, 24, 191−198. (b) Nicolaou,
K. C.; Dai, W.-M.; Tsay, S.-C.; Estevez, V. A.; Wrasidlo, W. Designed
Enediynes: A New Class of DNA-Cleaving Molecules with Potent and
Selective Anticancer Activity. Science 1992, 256, 1172−1178.
(c) Rudi, A.; Schleyer, M.; Kashman, Y. Clathculins A and B, Two
Novel Nitrogen-Containing Metabolites from theSponge Clathrina
aff. Reticulum. J. Nat. Prod. 2000, 63, 1434−1436. (d) Fontana, A.;
d’Ippolito, G.; D’Souza, L.; Mollo, E.; Parameswaram, P. S.; Cimino,
G. New Acetogenin Peroxides from the Indian Sponge Acarnus
bicladotylota. J. Nat. Prod. 2001, 64, 131−133. (e) Campbell, K.;
Kuehl, C. J.; Ferguson, M. J.; Stang, P. J.; Tykwinski, R. R.
Coordination-Driven Self-Assembly: Solids with Bidirectional Poros-
ity. J. Am. Chem. Soc. 2002, 124, 7266−7267. (f) Kim, H.; Lee, H.;
Lee, D.; Kim, S.; Kim, D. Asymmetric Total Syntheses of (+)-3-(Z)-
Laureatin and (+)-3-(Z)-Isolaureatin by “Lone Pair-Lone Pair
Interaction-Controlled” Isomerization. J. Am. Chem. Soc. 2007, 129,
2269−2274. (g) Trost, B. M.; Masters, J. T. Transition metal-
catalyzed couplings of alkynes to 1,3-enynes: modern methods and
synthetic applications. Chem. Soc. Rev. 2016, 45, 2212−2238.
(2) (a) Saito, S.; Yamamoto, Y. The Dehydro-Diels-Alder Reaction.
Chem. Rev. 2000, 100, 2901−2915. (b) Zhou, Y.; Zhang, Y.; Wang, J.
Recent advances in transition-metal-catalyzed synthesis of conjugated
enynes. Org. Biomol. Chem. 2016, 14, 6638−6650.
̈
(3) (a) Deussen, H.-J.; Jeppesen, L.; Scharer, N.; Junager, F.;
Bentzen, B.; Weber, B.; Weil, V.; Mozer, S. J.; Sauerberg, P. Process
Development and Scale-Up of the PPAR Agonist NNC 61−4655.
Org. Process Res. Dev. 2004, 8, 363−371. (b) Hata, T.; Iwata, S.; Seto,
S.; Urabe, H. Iron-Catalyzed Synthesis of Allenes from 2-Alken-4-
ynoates and Grignard Reagents. Adv. Synth. Catal. 2012, 354, 1885−
1889. (c) Myrtle, J. D.; Beekman, A. M.; Barrow, R. A. Ravynic acid,
an antibiotic polyeneyne tetramic acid from Penicillium sp. elucidated
through synthesis. Org. Biomol. Chem. 2016, 14, 8253−8260. (d) Gao,
Z.; Fletcher, S. P. Construction of β to carbonyl stereogenic centres
by asymmetric 1,4-addition of alkylzirconocenes to dienones and
ynenones. Chem. Commun. 2018, 54, 3601−3604.
(4) (a) Yan, W.; Ye, X.; Akhmedov, N. G.; Petersen, J. L.; Shi, X.
1,2,3-Triazole: Unique Ligand in Promoting Iron-Catalyzed Propargyl
Alcohol Dehydration. Org. Lett. 2012, 14, 2358−2361. (b) Ye, C.;
Qian, B.; Li, Y.; Su, M.; Li, D.; Bao, H. Iron-Catalyzed Dehydrative
Alkylation of Propargyl Alcohol with Alkyl Peroxides To Form
Substituted 1,3-Enynes. Org. Lett. 2018, 20, 3202−3205.
(5) (a) Sakurada, T.; Sugiyama, Y.-k.; Okamoto, S. Cobalt-Catalyzed
Cross Addition of Silylacetylenes to Internal Alkynes. J. Org. Chem.
2013, 78, 3583−3591. (b) Hirabayashi, T.; Sakaguchi, S.; Ishii, Y.
Iridium Complex-Catalyzed Cross-Coupling Reaction of Terminal
Alkynes with Internal Alkynes via C-H Activation of Terminal
Alkynes. Adv. Synth. Catal. 2005, 347, 872−876.
(17) (a) Park, K.; Palani, T.; Pyo, A.; Lee, S. Synthesis of aryl alkynyl
carboxylic acids and aryl alkynes from propiolic acid and aryl halides
by site selective coupling and decarboxylation. Tetrahedron Lett. 2012,
53, 733−737. (b) Park, K.; You, J.-M.; Jeon, S.; Lee, S. Palladium-
(6) Ogata, K.; Oka, O.; Toyota, A.; Suzuki, N.; Fukuzawa, S.-i.
Phosphine-Dependent Selective Cross-Dimerization between Termi-
nal Alkylacetylene and Silylacetylene by Iridium(I) Guanidinate
Complex−Phosphine System. Synlett 2008, 2008, 2663−2666.
E
Org. Lett. XXXX, XXX, XXX−XXX