Page 7 of 9
ACS Catalysis
intramolecular aminocarbonylation of tryptophan and
tryptamine derivatives under Pd/Cu/O system appeared just
prior to submission of this manuscript, see: (b) Han, H.; Yang,
S.-D.; Xia, J.-B. Pd/Cu Cocatalyzed Oxidative Tandem C−H
Amino- carbonylation and Dehydrogenation of Tryptamines:
Synthesis of Carbolinones. J. Org. Chem. 2019, 84, 3357−3369.
9163−9227. (e) Park, Y.; Kim, Y.; Chang, S. Transition Metal-
1
2
3
4
5
6
7
8
9
2
Catalyzed C−H Amination: Scope, Mechanism, and Applications.
Chem. Rev. 2017, 117, 9247−9301. (f) Piou, T.; Rovis, T. Electronic
and Steric Tuning of a Prototypical Piano Stool Complex: Rh(III)
Catalysis for C−H Functionalization. Acc. Chem. Res. 2018, 51,
170−180. (g) Rej, S.; Chatani, N. Rh-Catalyzed Removable
2
3
(
10) For selected reviews on direct C–H carbonylation involving
Directing Group Assisted sp or sp -C‒H Bond Functionalization.
CO, see: (a) Liu, Q.; Zhang, H.; Lei, A. Oxidative Carbonylation
Reactions: Organometallic Compounds (R–M) or Hydrocarbons
(R–H) as Nucleophiles. Angew. Chem., Int. Ed. 2011, 50,
Angew. Chem., Int. Ed. in press.
(16) Yang, L.; Zhang, G.; Huang, H. An Efficient Rhodium/
Oxygen Catalytic System for Oxidative Heck Reaction of Indoles
and Alkenes via C‒H Functionalization. Adv. Synth. Catal. 2014,
356, 1509−1515.
1
0788−10799. (b) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q.
Weak Coordination as a Powerful Means for Developing Broadly
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Useful C–H Functionalization Reactions. Acc. Chem. Res. 2012,
(17) Qin, X.; Liu, H.; Qin, D.; Wu, Q.; You, J.; Zhao, D.; Guo, Q.;
Huang, X.; Lan, J. Chelation-assisted Rh(III)-Catalyzed C2-
Selective Oxidative C–H/C–H Cross-coupling of Indoles/Pyrroles
with Heteroarenes. Chem. Sci. 2013, 4, 1964−1969.
4
5, 788−802. (c) Wu, X.-F.; Neumann, H.; Beller, M. Palladium-
Catalyzed Oxidative Carbonylation Reactions. ChemSusChem
2013, 6, 229−241. (d) Wu, L.; Fang, X.; Liu, Q.; Jackstell, R.; Beller,
M.; Wu, X.-F. Palladium-Catalyzed Carbonylative Transforma-
(18) See the Supporting Information for details.
3
tion of C(sp )–X Bonds. ACS Catal. 2014, 4, 2977−2989. (e) Lang,
(19) Crystallographic data for the compounds (CCDC 1879313 for
3ai, 1879312 for 3ax, 1879311 for 5, and 1879310 for 8) in this paper
have been deposited with the Cambridge Crystallographic Data
Centre as Supporting Information. These data can be obtained
free of charge from The Cambridge Crystallographic Data Center
via www.ccdc.cam.ac.uk/data_request/cif.
(20) When 2l and an excess of 1a (5 equiv) were subjected to the
reaction, a mixture of 3al (47%) and a diester product (20%) via
two-fold alkoxycarbonylation was observed.
R.; Xia, C.; Li, F. Carbonylative Diversification of Unactivated
Heteroaromatic Compounds. New J. Chem. 2014, 38, 2732−2738.
(
f) Gadge, S. T.; Gautam, P.; Bhanage, B. M. Transition Metal-
Catalyzed Carbonylative C–H Bond Functionalization of Arenes
and C(sp )–H Bond of Alkanes. Chem. Rec. 2016, 16, 835−856. (g)
Rajesh, N.; Barsu, N.; Sundararaju, B. Recent Advances in C(sp )–
3
3
H
Bond Carbonylation by First Row Transition Metals.
Tetrahedron. Lett. 2018, 59, 862−868.
11) Pospech, J.; Tlili, A.; Spannenberg, A.; Neumann, H.; Beller,
(
(21) (a) Guan, Z.-H.; Ren, Z.-H.; Spinella, S. M.; Yu, S.; Liang, Y.-
M.; Zhang, X. Rhodium-Catalyzed Direct Oxidative Carbonyla-
tion of Aromatic C−H Bond with CO and Alcohols. J. Am. Chem.
Soc. 2009, 131, 729−733. (b) Chen, M.; Ren, Z.-H.; Wang, Y.-Y.;
Guan, Z.-H. Palladium-Catalyzed Oxidative Carbonylation of
Aromatic C−H Bonds of N-Alkylanilines with CO and Alcohols
for the Synthesis of o-Aminobenzoates. J. Org. Chem. 2015, 80,
1258−1263. (c) Li, W.; Duan, Z.; Jiang, R.; Lei, A. Palladium/
Copper-Catalyzed Aerobic Oxidative C−H Carbonylation for the
Synthesis of o-Aminobenzoates. Org. Lett. 2015, 17, 1397−1400.
(22) For an example of Pd(II)-catalyzed hydroxyl-directed C–H
carbonylation, see: Lu, Y.; Leow, D.; Wang, X.; Engle, K. M.; Yu, J.-
Q. Hydroxyl-directed C–H Carbonylation Enabled by Mono-N-
protected Amino Acid ligands: An Expedient Route to 1-
Isochromanones. Chem. Sci. 2011, 2, 967−2971.
(23) (a) Lehmann, J.; Ghoneim, K. M.; EI-Fattah, B. A.; El-Gendy,
A. A. Lactones, Part 11. Syntheses of 4,9-Dihydropyrano[3,4-
b]indol-1(3H)-ones from α-Ethoxalyl-γ-lactones. Arch. Pharm.
1987, 320, 22−29. (b) Lehmann, J.; Pohl, U. Lactones, Part 16.
Syntheses of 4,9-Dihydropyranol[3,4-b]lindol-l(3H)-ones from a-
Ethoxalyl-δ-valerolactones. Arch. Pharm. 1987, 320, 1202−1209. (c)
Lehmann, J.; Heineke, D. Indole, Part 12. β-Carboline from
Lactones–Synthesis of Ligands of the Norharmane Receptor.
Arch. Pharm. 1994, 327, 715−720.
(24) For reports on C7-selective C–H activation of indoles, see: (a)
Robbins, D. W.; Boebel, T. A.; Hartwig, J. F. Iridium-Catalyzed,
Silyl-Directed Borylation of Nitrogen-Containing Heterocycles.
J. Am. Chem. Soc. 2010, 132, 4068−4069. (b) Xu, L.; Zhang, C.; He,
Y.; Tan, L.; Ma, D. Rhodium-Catalyzed Regioselective C7-
Functionalization of N-Pivaloylindoles. Angew. Chem., Int. Ed.
2016, 55, 321−325. (c) Yang, Y.; Qiu, X.; Zhao, Y.; Mu, Y.; Shi, Z.
Palladium-Catalyzed C−H Arylation of Indoles at the C7 Position.
J. Am. Chem. Soc. 2016, 138, 495−498. (d) Borah, A. J.; Shi, Z.
Rhodium-Catalyzed, Remote Terminal Hydroarylation of
M. Regioselective Ruthenium-Catalyzed Carbonylative Direct
Arylation of Five-Membered and Condensed Heterocycles. Chem.
Eur. J. 2014, 20, 3135−3141.
(12) Zhou, F.; Wang, D.-S.; Guan, X.; Driver, T. G. Nitroarenes as
the Nitrogen Source in Intermolecular Palladium-Catalyzed Aryl
C–H Bond Aminocarbonylation Reactions. Angew. Chem., Int. Ed.
2
017, 56, 4530−4534.
(
13) Liu, B.; Hu, F.; Shi, B.-F. Recent Advances on Ester Synthesis
via Transition-Metal Catalyzed C−H Functionalization. ACS
Catal. 2015, 5, 1863−1881.
(14) For examples on RhCl
(a) Witulski, B.; Schweikert, T. Synthesis of Indolo[2,3-a]pyrrolo
3,4-c]carbazoles by Oxidative Cyclization of Bisindolylmale-
imides with Rhodium(III)–Copper(II) Catalytic System.
3 2
·3H O-catalyzed C–H activation, see:
[
a
Synthesis 2005, 1959−1966. (b) Wang, P.; Rao, H.; Hua, R.; Li, C.-J.
Rhodium-Catalyzed Xanthone Formation from 2-Aryloxybenz-
aldehydes via Cross-Dehydrogenative Coupling (CDC). Org. Lett.
2
3
012, 14, 902−905. (c) Ran, Y.; Yang, Y.; You, H.; You, J. RhCl ‑
Catalyzed Oxidative C−H/C−H Cross-Coupling of (Hetero)-
aromatic Sulfonamides with (Hetero)arenes. ACS Catal. 2018, 8,
1
796−1801. (d) Shi, Y.; Zhang, L.; Lan, J.; Zhang, M.; Zhou, F.; Wei,
W.; You, J. Oxidative C–H/C–H Cross-Coupling Reactions
between N-Acylanilines and Benzamides Enabled by a Cp*-Free
RhCl
108−9012. (e) She, Z.; Wang, Y.; Wang, D.; Zhao, Y.; Wang, T.;
Zheng, X.; Yu, Z.-X.; Gao, G.; You, J. Two-Fold C−H/C−H Cross-
Coupling Using RhCl ·3H O as the Catalyst: Direct Fusion of N-
Hetero)arylimidazolium Salts and (Hetero)arenes. J. Am. Chem.
Soc. 2018, 140, 12566−12573.
3
/TFA Catalytic System. Angew. Chem., Int. Ed. 2018, 57,
9
3
2
(
(
15) For selected reviews on Rh(III)-catalyzed C−H activation, see:
(
a) Satoh, T.; Miura, M. Oxidative Coupling of Aromatic
Substrates with Alkynes and Alkenes under Rhodium Catalysis.
Chem. Eur. J. 2010, 16, 11212−11222. (b) Song, G.; Wang, F.; Li, X.
C–C, C–O and C–N Bond Formation via Rhodium(III)-Catalyzed
Oxidative C–H Activation. Chem. Soc. Rev. 2012, 41, 3651−3678. (c)
Activated Olefins through
a
Long-Range Deconjugative
Isomerization. J. Am. Chem. Soc. 2018, 140, 6062−6066.
Kuhl, N.; Schröder, N.; Glorius, F. Formal S
Rhodium(III)-Catalyzed C−H Bond Activation. Adv. Synth. Catal.
014, 356, 1443−1460. (d) Hummel, J. R.; Boerth, J. A.; Ellman, J. A.
N
-Type Reactions in
(25) (a) Du, Y.; Hyster, T. K.; Rovis, T. Rhodium(III)-Catalyzed
Oxidative Carbonylation of Benzamides with Carbon Monoxide.
Chem. Commun. 2011, 47, 12074−12076. (b) Lang, R.; Wu, J.; Shi,
L.; Xia, C.; Li, F. Regioselective Rh-Catalyzed Direct
Carbonylation of Indoles to Synthesize Indole-3-carboxylates.
2
Transition-Metal-Catalyzed C−H Bond Addition to Carbonyls,
Imines, and Related Polarized π Bonds. Chem. Rev. 2017, 117,
ACS Paragon Plus Environment