Inorganic Chemistry
Article
Taylor, S. H.; Knight, D. W.; Kiely, C. J.; Hutchings, G. J. Solvent-
Free Oxidation of Primary Carbon-Hydrogen Bonds in Toluene
Using Au-Pd Alloy Nanoparticles. Science 2011, 331, 195−199.
(4) Midya, S. P.; Sahoo, M. K.; Landge, V. G.; Rajamohanan, P. R.;
Balaraman, E. Reversed Reactivity of Anilines with Alkynes in the
Rhodium-Catalysed C-H Activation/Carbonylation Tandem. Nat.
Commun. 2015, 6, 8591.
o-Xylene was oxidized at 130 °C with 1 bar of O2, giving a
TOF of 5975 (entry 5, Table 2). The ethylbenzene conversion
was somewhat lower, due to the high C−H bond dissociation
energy (87 kcal mol−1) (entry 6, Table 2). Briefly, it is
reasonable for us to say that the 2.0Au@mZnO in this work is
a very suitable catalyst for aerobic oxidation of hydrocarbons
under mild conditions.
(5) White, M. C. Adding Aliphatic C-H Bond Oxidations to
Synthesis. Science 2012, 335, 807−809.
CONCLUSIONS
(6) Wang, Q.; Huang, F.; Jiang, L.; Zhang, C.; Sun, C.; Liu, J.; Chen,
D. Comprehensive Mechanistic Insight into Cooperative Lewis Acid/
Cp*CoIII-Catalyzed C-H/N-H Activation for the Synthesis of
Isoquinolin-3-ones. Inorg. Chem. 2018, 57, 2804−2814.
(7) Tong, X.; Xu, J.; Miao, H. Highly Efficient and Metal-Free
Aerobic Hydrocarbons Oxidation Process by an O-phenanthroline-
Mediated or Ganocatalytic System. Adv. Synth. Catal. 2005, 347,
1953−1957.
■
In summary, we successfully synthesized high-performance
gold-based catalysts by an in situ self-assembly method. We
found that the catalytic activity of gold-based catalysts and the
atomic ratio of “reactive” oxygen species in the support
increases as the gold nanoparticle size decreases. The
interactions between gold and different types of supports
lead to different concentrations of surface oxygen species in the
support. In addition, during the catalytic reaction, our catalysts
exhibit excellent thermal stability and can be subjected to long-
term high-temperature treatment at temperatures up to 500
°C. All of these results indicate that Au NPs@mMOx
nanospheres are ideal environmental catalysts for industrial
applications.
(8) bin Saiman, M. I.; Brett, G. L.; Tiruvalam, R.; Forde, M. M.;
Sharples, K.; Thetford, A.; Jenkins, R.t L.; Dimitratos, N.; Lopez-
Sanchez, J. A.; Murphy, D. M.; Bethell, D.; Willock, D. J.; Taylor, S.
H.; Knight, D. W.; Kiely, C. J.; Hutchings, G. J. Involvement of
Surface-Bound Radicals in the Oxidation of Toluene using Supported
Au-Pd Nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 5981−5985.
(9) Ghosh, M.; Pattanayak, S.; Dhar, B.; Singh, K.; Panda, C.; Gupta,
S. Selective C-H Bond Oxidation Catalyzed by the Fe-bTAML
Complex: Mechanistic Implications. Inorg. Chem. 2017, 56, 10852−
10860.
(10) Zhou, H.; Xiao, L.; Liu, X.; Li, S.; Kobayashi, H.; Zheng, X.;
Fan, J. Defect-Less, Layered Organo-Titanosilicate with Super-
hydrophobicity and its Catalytic Activity in Room-Temperature
Olefin Epoxidation. Chem. Commun. 2012, 48, 6954−6956.
(11) Waser, M.; Walther, J.; Pochlauer, P.; Falk, H. Concerning
Chemistry, Reactivity, and Mechanism of Transition Metal Catalysed
Oxidation of Benzylic Compounds by Means of Ozone. J. Mol. Catal.
A: Chem. 2005, 236, 187−193.
(12) Campbell, C. T.; Parker, S. C.; Starr, D. E. The Effect of Size-
Dependent Nanoparticle Energetics on Catalyst Sintering. Science
2002, 298, 811−814.
(13) Boronat, M.; Corma, A. Origin of the Different Activity and
Selectivity toward Hydrogenation of Single Metal Au and Pt on TiO2
and Bimetallic Au-Pt/TiO2 Catalysts. Langmuir 2010, 26, 16607−
16614.
(14) Xie, S.; Liu, Y.; Deng, J.; Zhao, X.; Yang, J.; Zhang, K.; Han, Z.;
Arandiyan, H.; Dai, H. Effect of Transition Metal Doping on the
Catalytic Performance of Au-Pd/3DOM Mn2O3 for the Oxidation of
Methane and O-xylene. Appl. Catal., B 2017, 206, 221−232.
(15) Yuan, Y.; Yan, N.; Dyson, P. pH-Sensitive Gold Nanoparticle
Catalysts for the Aerobic Oxidation of Alcohols. Inorg. Chem. 2011,
50, 11069−11074.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
HRTEM and TEM images, N2 adsorption−desorption
isotherms, XPS spectra of O 1s peaks and XRD patterns
of 2.0Au@mZnO, 2.5Au@mZnO, 3.0Au@mZnO,
2.0Au@mCeO2, and 2.0Au@mCuO samples, recycling
runs for the indane aerobic oxidations, concentrations of
oxygen species atoms and surface areas of all catalysts,
and indane oxidation catalytic activity with other
AUTHOR INFORMATION
Corresponding Author
■
ORCID
Notes
The authors declare no competing financial interest.
(16) Dong, Z.; Wu, M.; Wu, J.; Ma, Y.; Ma, Z. In Situ Synthesis of
TiO2/SnOx-Au Ternary Heterostructures Effectively Promoting
Visible-light Photocatalysis. Dalton Trans. 2015, 44, 11901.
(17) Liu, B.; Kuo, C. H.; Chen, J.; Luo, Z.; Thanneeru, S.; Li, W.;
Song, W.; Biswas, S.; Suib, S. L. Colloidal Amphiphile-templated
Growth of Highly Crystalline Mesoporous Nonsiliceous Oxides.
Angew. Chem., Int. Ed. 2015, 54, 9061−9065.
ACKNOWLEDGMENTS
■
This work was supported by the Young Thousand Talents
Program and the National Natural Science Foundation of
China (Grant Nos. 21671073, 21621001, 21671074, and
21371067), and the “111” Project of the Ministry of Education
of China (B17020).
(18) Haruta, M. Size- and Support-Dependency in the Catalysis of
Gold. Catal. Today 1997, 36, 153−166.
(19) Ma, G.; Binder, A.; Chi, M.; Liu, C.; Jin, R.; Jiang, D.; Fan, J.;
Dai, S. Stabilizing Gold Clusters by Heterostructured Transition-
Metal Oxide-Mesoporous Silica Supports for Enhanced Catalytic
Activities for CO Oxidation. Chem. Commun. 2012, 48, 11413−
11415.
(20) Cao, A.; Veser, G. Exceptional High-Temperature Stability
through Distillation-Like Self-Stabilization in Bimetallic Nano-
particles. Nat. Mater. 2010, 9, 75−81.
(21) Zarur, A.; Ying, J. Y. Reverse Microemulsion Synthesis of
Nanostructured Complex Oxides for Catalytic Combustion. Nature
2000, 403, 65−67.
REFERENCES
■
(1) Ghavtadze, N.; Melkonyan, F. S.; Gulevich, A. V.; Huang, C.;
Gevorgyan, V. Conversion of 1-alkenes into 1,4-diols Through an
Auxiliary-Mediated Formal Homoallylic C-H Oxidation. Nat. Chem.
2014, 6, 122−125.
(2) Zhang, P.; Gong, Y.; Li, H.; Chen, Z.; Wang, Y. Solvent-Free
Aerobic Oxidation of Hydrocarbons and Alcohols with Pd@N-Doped
Carbon from Glucose. Nat. Commun. 2013, 4, 1593.
(3) Kesavan, L.; Tiruvalam, R.; Ab Rahim, M. H.; Saiman, M. I.;
Enache, D. I.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.;
G
Inorg. Chem. XXXX, XXX, XXX−XXX