DOI: 10.1039/C9CC02103E
ChemComm
COMMUNICATION
Chem.Comm.
(8@4a), while 84+ was too large to be included in 5a6- (5a·8), as
illustrated in Scheme 3, and Section 5.7 and 5.8, ESI†. On one
occasion, pure crystals were successfully grown from a residue of the
1H NMR titration experiment, and the structure of 8@4a was resolved
by X-ray analysis (Fig. 3d). The inclusive association afforded a
supramolecular ring@ring structure.5f Despite the presence of empty
cavities in 5a·8 as well as 5a·6Na due to the fact that the blue box (8)
and Nan(H2O)m cluster were too large to be encapsulated, they were
not available for gas adsorption so far (Section 6, ESI†).
Soc, 1991, 113, 2754–2755; (b) H.-J. Choi, D. Bühring, M. L. C. Quan, C.
B. Knobler, D. J. Cram, J. Chem. Soc., Chem. Commun., 1992, 1733-1735;
(c) S. Ro, S. J. Rowan, A. R. Pease, D. J. Cram, J. F. Stoddart, Org. Lett.,
2000, 2, 2411–2414; (d) J. Sherman, Chem. Commun., 2003, 1617–1623;
(e) X. Liu, Y. Liu, G. Li, R. Warmuth, Angew. Chem. Int. Ed., 2006, 45,
901–904; (f) N. Nishimura, K. Kobayashi, Angew. Chem. Int. Ed., 2008,
47, 6255–6258.
3
For reviews and selected papers on the template-driven synthesis of
catenanes and rotaxanes, see: (a) D. B. Amabilino, J. F. Stoddart, Chem.
Rev., 1995, 95, 2725–2828; (b) A. R. Pease, J. O. Jeppesen, J. F. Stoddart,
Y. Luo, C. P. Collier, J. R. Heath, Acc. Chem. Res., 2001, 34, 433–444;
(c) J. D. Badjić, A. Nelson, S. J. Cantrill, W. B. Turnbull, J. F. Stoddart,
Acc. Chem. Res., 2005, 38, 723–732; (d) R. Jäger, F. Vögtle, Angew. Chem.
Int. Ed., 1997, 36, 930–944; (e) O. Lukin, F. Vögtle, Angew. Chem. Int.
Ed., 2005, 44, 1456–1477; (f) Y. Furusho, T. Oku, T. Hasegawa, A.
Tsuboi, N. Kihara, T. Takata, Chem. Eur. J., 2003, 9, 2895–2903.
For reviews and selected papers on macrocycles, cages, and 2D/3D
covalent organic frameworks (COFs), see: (a) M. Mastalerz, Angew. Chem.
Int. Ed., 2010, 49, 5042–5053; (b) R. Nishiyabu, Y. Kubo, T. D. James, J.
S. Fossey, Chem. Commun., 2011, 47, 1124–1150; (c) F. Beuerle, B. Gole,
Angew. Chem. Int. Ed., 2018, 57, 4850–4878; (d) A. P. Côté, A. I. Benin,
N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science, 2005,
310, 1166–1170; (e) H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortés,
A. P. Côté, R. E. Taylor, M. O'Keeffe, O. M. Yaghi, Science, 2007, 316,
268–272; (f) F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klöck, M.
O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 4570–4571; (g) T.
Tozawa, J. T. A. Jones, S. I. Swamy, S. Jiang, D. J. Adams, S. Shakespeare,
R. Clowes, D. Bradshaw, T. Hasell, S. Y. Chong, C. Tang, S. Thompson,
J. Parker, A. Trewin, J. Bacsa, A. M. Z. Slawin, A. Steiner, A. I. Cooper,
Nat. Mater., 2009, 8, 973–978; (h) G. Zhang, O. Presly, F. White, I. M.
Oppel, M. Mastalerz, Angew. Chem. Int. Ed., 2014, 53, 1516–1520; (i) D.
Xu, R. Warmuth, J. Am. Chem. Soc., 2008, 130, 7520–7521; (j) S.
Klotzbach, T. Scherpf, F. Beuerle, Chem. Commun., 2014, 50, 12454–
12457; (k) B. Içli, N. Christinat, J. Tönnemann, C. Schüttler, R. Scopelliti,
K. Severin, J. Am. Chem. Soc, 2009, 131, 3154–3155; (l) N. Iwasawa, H.
Takahagi, J. Am. Chem. Soc, 2007, 129, 7754–7755.
For selected papers on macrocycles, cages, and 2D/3D COF of borates and
silicates, see: (a) D. J. McCord, J. H. Small, J. Greaves, Q. N. Van, A. J.
Shaka, E. B. Fleischer, K. J. Shea, J. Am. Chem. Soc, 1998, 120, 9763–
9770; (b) J. B. Lambert, S. R Singer, J. Organomet. Chem., 2004, 689,
2293–2302; (c) B. F. Abrahams, D. J. Price, R. Robson, Angew. Chem.
Int. Ed., 2006, 45, 806–810; (d) H. Danjo, K. Hirata, S. Yoshigai, I.
Azumaya, K. Yamaguchi, J. Am. Chem. Soc, 2009, 131, 1638–1639; (e)
K. Landskron, Chem. Eur. J., 2015, 21, 14258–14267; (f) H. Danjo, Y.
Hashimoto, Y. Kidena, A. Nogamine, K. Katagiri, M. Kawahata, T.
Miyazawa, K. Yamaguchi, Org. Lett., 2015, 17, 2154–2157; (g) J. Roeser,
D. Prill, M. J. Bojdys, P. Fayon, A. Trewin, A. N. Fitch, M. U. Schmidt,
A. Thomas, Nat. Chem., 2017, 9, 977–982; (h) O. Yahiaoui, A. N. Fitch,
F. Hoffmann, M. Fröba, A. Thomas, J. Roeser, J. Am. Chem. Soc., 2018,
140, 5330–5333.
2+
N
N
N
N
N
Ph
Ph
O
Ph
O
O
O
O
Si
O
O
Si
Si
O
N
O
O
O
O
O
O
Si
Ph
Ph
·2PF6
4
O
O
O
N
N
Si
O
O
7
·2PF6
O
O
N
N
or
O
O
O
O
N
N
Si
O
Si
O
O
Si
O
O
O
O
Ph
Ph
O
O
O
O
O
Si
O
O
O
Si
Ph
Ph
Ph
4a
·4TMEDAH
or
7
4a
@
7
5a
@
4+
5a
·6HNEt3
N
N
N
Ph
Ph
O
Ph
N
O
O
O
O
O
Si
O
O
Si
N
N
Si
O
O
O
O
O
Si
O
Ph
·4PF6
Ph
O
O
N
O
N
N
N
Si
O
O
8
·4PF6
O
O
N
or
O
O
O
O
N
Si
O
Si
O
O
Si
O
O
O
O
Ph
Ph
O
O
O
O
O
Si
O
O
O
Si
Ph
Ph
Ph
8
4a
@
5a 8
·
Scheme 3 Polypyridinium cation inclusion of 4a and 5a.
In conclusion, we demonstrated that ditopic and tritopic silane
catecholates can successfully be employed for the synthesis of
macrocycles as well as 3D nanocages in a predicted manner. In order
to achieve dynamic covalent bonding conditions, MeCN was used as
co-solvent. The macrocyclic products were formed by precipitation-
driven reactions with the aid of templates such as reactants,
anthracene, and ammonium cation linkers, while nanocage products
were the result of thermodynamic and kinetic equilibria. An anionic
macrocycle and tetrahedral cage were exchanged and encapsulated in
solution using several ammonium cations. Aiming to attain gas
adsorption, the design and synthesis of stackable macrocycles and
larger cages using different types of polycatechol building blocks are
currently underway in our laboratory.
5
6
7
J. L. Holmes, B. F. Abrahams, A. Ahveninen, B. A. Boughton, T. A.
Hudson, R. Robson, D. Thinagaran, Chem. Commun, 2018, 54, 11877–
11880.
For studies on CTC derived coordination cages, see: (a) B.ꢀF. Abrahams,
N.ꢀJ. FitzGerald, R. Robson, Angew. Chem. Int. Ed., 2010, 49, 2896–2899;
(b) B. F. Abrahams, B. A. Boughton, N. J. FitzGerald, J. L. Holmes, R.
Robson, Chem. Commun, 2011, 47, 7404–7406.
Our results were presented at the 20th and 21th symposium of the Society
of Silicon Chemistry Japan, October 7-8, 2016 (Abstract P18) and October
27-28, 2017 (Abstract P24) as well as the annual meeting of the Chemical
Society of Japan, March 16, 2018 (Abstract 1PA-116).
D. Kost, I. Kalikhman “Hypervalent Silicon Compounds” in the
Chemistry of Organic Silicon Compounds, Volume 2, Part 2, edited by Z.
Rappoport, Y. Apeloig, John Wiley & Sons, 1998, Chap. 23, pp. 1339–
1445.
This work was supported by the MEXT-Supporting Program for the
Strategic Research Foundation at Private Universities. The authors are
grateful to Colcoat Co., Ltd. for financial support.
Notes and references
8
9
1
For reviews on dynamic covalent chemistry (DCC), see: (a) S. J. Rowan,
S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart, Angew.
Chem. Int. Ed., 2002, 41, 898–952; (b) C. D. Meyer, C. S. Joiner, J. F.
Stoddart, Chem. Soc. Rev., 2007, 36, 1705–1723; (c) M. E. Belowich, J.
F. Stoddart, Chem. Soc. Rev., 2012, 41, 2003–2024; (d) Y. Jin, C. Yu, R.
J. Denman, W. Zhang, Chem. Soc. Rev., 2013, 42, 6634–6654; (e) W.
Zhang, J. S. Moore, Angew. Chem. Int. Ed., 2006, 45, 4416–4439; (f) R.-
C. Brachvogel, M. von Delius, Eur. J. Org. Chem., 2016, 3662–3670; (g)
H. Kudo, R. Hayashi, K. Mitani, T. Yokozawa, N. C. Kasuga, T.
Nishikubo, Angew. Chem. Int. Ed., 2006, 45, 7948–7952; (h) S. P. Black,
J. K. M. Sanders, A. R. Stefankiewicz, Chem. Soc. Rev., 2014, 43, 1861–
1872.
2
For reviews and selected papers on the template-directed synthesis of
cavitand and carcerand, see: (a) M. L. C. Quan, D. J. Cram, J. Am. Chem.
4 |Chem.Commun., 2019, 00, 1-4
This journal is © The Royal Society of Chemistry 2019