Published on Web 07/21/2009
A Porous Coordination Polymer Exhibiting Reversible
Single-Crystal to Single-Crystal Substitution Reactions at
Mn(II) Centers by Nitrile Guest Molecules
Madhab C. Das and Parimal K. Bharadwaj*
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
Received January 26, 2009; E-mail: pkb@iitk.ac.in
Abstract: The porous coordination polymer {[Mn(L)(H2O)](H2O)1.5(DMF)}n (1) containing a water molecule
coordinated at the apical position of each distorted octahedral Mn(II) center has been synthesized using
the solvothermal technique by reacting Mn(NO3)2 ·4H2O with a new flexible ligand (LH2) having isophthalic
fragment and pyridine donors at the two ends. The coordinated water molecule could be substituted by
nitrile guest molecules such as acetonitrile, acrylonitrile, allylnitrile, and crotononitrile (affording compounds
2-5, respectively) without loss of crystallinity. Interestingly, compound 1 selectively captures cis-crotononitrile
into its cavity from a mixture of cis and trans isomers. Hence, the cis isomer can be separated from the
trans isomer. In each case, 1.5 lattice water molecules and a dimethylformamide (DMF) molecule are also
simultaneously replaced by certain numbers of these guest molecules. When these first-generation
compounds 2-5 are dipped in DMF at room temperature with the lid of the vial open to the atmosphere,
the mother crystal 1 is regenerated in each case. Thus, all of these substitution reactions are completely
reversible. Also, the first-generation compounds 2-5 can be interconverted among one another by dipping
them in appropriate nitrile guests. All of these phenomena could be observed in single-crystal to single-
crystal fashion.
Introduction
are known, examples of single-crystal to single-crystal (SC-SC)
phase transformation6-8 are fewer in number. Most of the
Recent years have witnessed considerable interest in porous
coordination polymers (PCPs) or metal-organic frameworks
(MOFs) because of their potential applications as functional
materials.1-3 One of the most important discoveries in the area
of PCPs involves their flexible and dynamic properties, which
are characteristic of the cooperative action of organic and
inorganic moieties.4,5 Guest-responsive changes between the
solid phases are particularly intriguing. Although various cases
of structural transformation (single-crystal to amorphous-phase)
reported cases involve the dimerization or polymerization of
unsaturated molecules6 or guest exchange of porous materials.7,8
Particularly rare are reactions within the coordination spheres
of transition metals. Such reactions are known in solids,9,10 but
they have often been accompanied by catastrophic failure of
the crystal, thus preventing the identification of the products.
As has been pointed out,4d many applications (e.g., catalysis
and storage) do not require single-crystal transformations, but
retention of single crystallinity would be essential if a crystal
were to be incorporated into a device such as a substrate-
triggered sensor,4d and could also find use in directing multiple
small molecules cooperatively in chemical reactivity. Besides,
(1) (a) Kuznicki, S. M.; Bell, V. A.; Nair, S.; Hillhouse, H. W.; Jacubinas,
R. M.; Braunbarth, C. M.; Toby, B. H.; Tspatsis, M. Nature 2001,
412, 720.
(2) (a) Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov,
R. V.; Kobayashi, T. C.; Sakamoto, H.; Chiba, T.; Takata, M.;
Kawazoe, Y.; Mita, Y. Nature 2005, 436, 238. (b) Kitaura, R.;
Kitagawa, S.; Kubota, Y.; Kobayashi, T.; Kindo, L.; Mita, Y.; Matsuo,
A.; Kobayashi, M.; Chang, H.-C.; Ozawa, T.; Suzuki, M.; Sakata, M.;
Takata, M. Science 2002, 298, 2358.
(6) (a) Gao, X.; Friscic, T.; MacGillivray, L. R. Angew. Chem., Int. Ed.
2004, 43, 232. (b) Chu, Q.; Swenson, D. C.; MacGillivray, L. R.
Angew. Chem., Int. Ed. 2005, 44, 3569. (c) Papaefstathiou, G. S.;
Zhong, Z.; Geng, L.; MacGillivray, L. R. J. Am. Chem. Soc. 2004,
126, 9158. (d) Nagarathinam, M.; Vittal, J. J. Angew. Chem., Int. Ed.
2006, 45, 4337.
(3) (a) Chae, H. K.; Siberio-Perez, D. Y.; Kim, J. H.; Go, Y. B.; Yaghi,
O. M. Nature 2004, 427, 523. (b) Yaghi, O. M.; Li, G. M.; Li, H. L.
Nature 1995, 378, 703. (c) Atwood, J. L.; Barbour, L. J.; Jerga, A.;
Schottel, B. L. Science 2002, 298, 1000.
(7) (a) Lee, E. Y.; Suh, M. P. Angew. Chem., Int. Ed. 2004, 43, 2798. (b)
Su, C.-Y.; Goforth, A. M.; Smith, M. D.; Pellechia, P. J.; zur Loye,
H.-C. J. Am. Chem. Soc. 2004, 126, 3576. (c) Li, H.-L.; Eddaoudi,
M.; O’Keefe, M.; Yaghi, O. M. Nature 1999, 402, 276. (d) Kitagawa,
S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43, 2234.
(8) (a) Biradha, K.; Hongo, Y.; Fujita, M. Angew. Chem., Int. Ed. 2002,
41, 3395. (b) Wu, C.-D.; Lin, W. Angew. Chem., Int. Ed. 2005, 44,
1958. (c) Biradha, K.; Fujita, M. Angew. Chem., Int. Ed. 2002, 41,
3392. (d) Halder, G. J.; Keppert, C. J. J. Am. Chem. Soc. 2005, 127,
7891.
(4) (a) Lee, Y. E.; Jang, S. Y.; Suh, M. P. J. Am. Chem. Soc. 2005, 127,
6374. (b) Kitagawa, S.; Uemura, K. Chem. Soc. ReV. 2005, 34, 109.
(c) Bradshaw, D.; Claridge, J. B.; Cussen, E. J.; Prior, T. J.;
Rosseinsky, M. J. Acc. Chem. Res. 2005, 38, 273. (d) Dobrzan’ska,
L.; Lloyd, G. O.; Esterhuysen, C.; Barbour, L. J. Angew. Chem., Int.
Ed. 2006, 45, 5856.
(5) (a) Uemura, K.; Kitagawa, S.; Fukui, K.; Saito, K. J. J. Am. Chem.
Soc. 2004, 126, 3817. (b) Matsuda, R.; Kitaura, R.; Kitagawa, S.;
Kubota, Y.; Kobayashi, T. C.; Horike, S.; Takata, M. J. Am. Chem.
Soc. 2004, 126, 14063. (c) Kitaura, R.; Seki, K.; Akiyama, G.;
Kitagawa, S. Angew. Chem., Int. Ed. 2003, 42, 428. (d) Seki, K. Phys.
Chem. Chem. Phys. 2002, 4, 1968.
(9) Alfaro, N. M.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A. Inorg.
Chem. 1992, 31, 2718.
(10) Hanson, K.; Calin, N.; Bugaris, D.; Scancella, M.; Sevov, S. C. J. Am.
Chem. Soc. 2004, 126, 10502.
9
10942 J. AM. CHEM. SOC. 2009, 131, 10942–10949
10.1021/ja9006035 CCC: $40.75 2009 American Chemical Society