J. FENG ET AL.
a riding model. Crystallographic data and other pertinent
information for all the complexes are summarized in Table S1
(Supporting Information). Selected bond distances and their
estimated standard deviations are listed in Table S2 (Supporting
Information). CCDC 752512 and 752513 for 1 and 3, respectively,
contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from the Cambridge
quest/cif.
4H), 1.40–1.91(m, 20H), 0.98 (m, 6H); 13C NMR (100Hz, CDCl3) d
163.8, 163.7, 153.2, 136.0, 131.7, 130.7, 128.8, 128.0, 123.8, 123.2,
123.1, 122.3, 120.7, 120.2, 53.1, 40.3, 40.2, 30.3, 30.2, 25.8, 23.8, 20.5,
20.4, 13.9, 13.8; MALDI-TOF MS(m/z) 668.8, Calcd for C42H44N4O4
(m/z) 668.8. Anal. Calcd. for C42H44N4O4: C, 75.42; H, 6.63; N, 8.38.
Found: C, 75.38; H, 6.61; N, 8.43.
N,N0-dibutyl-dibromo-3,4:9,10-perylene -tetracarboxylic dii-
mide[39] and N,N0 -dibutyl-dibromo-3,4:9,10- perylene-
tetracarboxylic diimide(5)[37] were prepared following the
Acknowledgements
The authors acknowledge the financial support from the natural
science foundation of China (grant no. 20771066 and
20640420467), Ministry of education.
1
literature method and characterized by H NMR, 13C NMR, and
MALDI-TOF mass spectra. Synthesis of compounds 1–4 is
described in the following. All other chemicals are purchased
from commercial source. Solvents were of analytical grade and
were purified by the standard method before use.
REFERENCES
N,N(-dibutyl-1,7-dipyrrolidinyl-3,4:9,10-perylenetetra-car-
boxylic diimide (1), and N,N(-dibutyl-1,6 -dipyrrolidinyl-
3,4:9,10-perylenetetracarboxylic diimide (2): A mixture of
N,N0-dibutyl-1,6-dibromo-3,4:9,10 -perylenetetracarboxylic dii-
mide and N,N0 -dibutyl-1,7 -dibromo -3,4:9,10- perylenetetracar-
boxylic diimide (1 g, 1.51 mmol) was dissolved in 30 ml
pyrrolidine. The solution was heated at 608 under dry nitrogen
for 24 h with stirring. Excess pyrrolidine was removed on a rotary
evaporator. The solid collected was purified by column
chromatography on silica gel using CHCl3 as eluent. 1: green
solid; 603 mg, yield 58%; mp. > 300 8C; 1H NMR (300 MHz, CDCl3) d
8.37 (s, 2H), 8.31 (d, 2H), 7.53 (d, 2H), 4.24 (t, 4H), 3.68 (m, 4H), 2.76
(m, 4H), 1.99(m, 8H), 1.76(m, 4H), 1.48(m, 4H), 0.98 (t, 6H); 13C NMR
(100 Hz, CDCl3) d 164.0, 146.4, 134.1, 129.8, 126.6, 123.7, 122.1,
121.7, 120.7, 119.0, 118.0, 52.1, 40.3, 30.3, 25.8, 20.4, 13.9;
MALDI-TOF MS(m/z) 640.8, Calcd for C40H40N4O4 (m/z) 640.8.
Anal. Calcd. for C40H40N4O4: C, 74.98; H, 6.29; N, 8.74. Found: C,
74.95; H, 6.32; N, 8.71. 2: blue solid; 156 mg, yield 15%;
mp. > 300 8C; 1H NMR (300 MHz, CDCl3) d 8.65 (d, 2H), 8.31 (s,
2H), 7.85 (d, 2H), 4.23 (m, 4H), 3.68 (m, 4H), 2.77 (m, 4H), 2.00(m,
8H), 1.76(m, 4H), 1.49(m, 4H), 0.98 (t, 6H); 13C NMR (100 Hz, CDCl3)
d 164.3, 164.1, 149.9, 135.7, 131.1, 130.2, 128.5, 128.3, 123.3, 122.9,
117.8, 117.6, 117.0, 116.9, 52.1, 40.3, 40.2, 30.4, 30.3, 25.6, 20.5,
20.4, 13.9, 13.8; MALDI-TOF MS(m/z) 640.8, Calcd for C40H40N4O4
(m/z) 640.8. Anal. Calcd. for C40H40N4O4: C, 74.98; H, 6.29; N, 8.74.
Found: C, 74.93; H, 6.35; N, 8.72.
[1] M. R. Wasielewski, J. Org. Chem. 2006, 71, 5051–5066.
[2] J. A. A. W. Elemans, R. Van Hameren, R. J. M. Nolte, A. E. Rowan, Adv.
Mater. 2006, 18, 1251–1266.
[3] H. Langhal, Helv. Chim. Acta. 2005, 88, 1309–1343.
[4] F. Wu¨rthner, Chem. Commun. 2004, 1564–1579.
[5] E. Yukruk, A. L. Dogan, H. Canpinar, D. Guc, E. U. Akkaya, Org. Lett.
2005, 7, 2885–2887.
[6] M. Berberich, A.-M. Krause, M. Orlandi, F. Scandola, F. Wu¨rthner,
Angew. Chem. Int. Ed. Engl. 2008, 47, 6616–6619.
[7] K. Sugiyasu, N. Fujita, S. Shinkai, Angew. Chem. Int. Ed. Engl. 2004, 43,
1229–1233.
[8] B. Rybtchinski, L. E. Sinks, M. R. Wasielewski, J. Am. Chem. Soc. 2004,
126, 12268–12269.
[9] Y. Shibano, T. Umeyama, Y. Matano, H. Imahori, Org. Lett. 2007, 9,
1971–1974.
[10] Y. Shibano, H. Imahori, C. Adachi, J. Phys. Chem. C 2009, 113,
15454–15466.
¨
[11] T. Edvinsson, C. Li, N. Pschirer, J. Schoneboom, F. Eickemeyer, R. Sens,
G. Boschloo, A. Herrmann, K. Mu¨llen, A. Hagfeldt, J. Phys. Chem. C
2007, 111, 15137–15140.
[12] Y. Jin, J. Hua, W. Wu, X. Ma, F. Meng, Synth. Met. 2008, 158, 64–67.
¨
[13] C. Hippius, F. Schlosser, M. O. Vysotsky, V. Bohmer, F. Wu¨rthner, J. Am.
Chem. Soc. 2006, 128, 3870–3871.
[14] W. S. Shin, H.-H. Jeong, M.-K. Kim, S.-H. Jin, M.-R. Kim, J.-K. Lee, J. W.
Lee, Y.-S. Gal, J. Mater. Chem. 2006, 16, 384–390.
[15] Y. Shibano, T. Umeyama, Y. Matano, N. V. Tkachenko, H. Lemmetyinen,
Y. Araki, O. Ito, H. Imahori, J. Phys. Chem. C 2007, 111, 6133–6142.
[16] L. Chen, J. H. Yum, S.-J. Moon, A. Herrmann, F. Eickemeyer, N. G.
¨
Pschirer, P. Erk, J. Schoneboom, K. Mu¨llen, M. Gra¨tzel, M. K. Nazeer-
uddin, ChemSusChem. 2008, 1, 615–618.
[17] Y. Shibano, T. Umeyama, Y. Matano, N. V. Tkachenko, H. Lemmetyinen,
H. Imahori, Org. Lett. 2006, 8, 4425–4428.
[18] H. Langhals, S. Kirner, Eur. J. Org. Chem. 2000, 365–380.
[19] A. S. Lukas, Y. Zhao, S. E. Miller, M. R. Wasielewski, J. Phys. Chem. B
2002, 106, 1299–1306.
[20] J. M. Giaimo, A. V. Gusev, M. R. Wasielewski, J. Am. Chem. Soc. 2002,
124, 8530–8531.
[21] M. J. Fuller, L. E. Sinks, B. Rybtchinski, J. M. Giaimo, X. Y. Li, M. R.
Wasielewski, J. Phys. Chem. A 2005, 109, 970–975.
[22] T. M. Wilson, M. J. Tauber, M. R. Wasielewski, J. Am. Chem. Soc. 2009,
131, 8952–8957.
[23] J. Mareda, S. Matile, Chem. Eur. J. 2009, 15, 28–37.
[24] A. Perez-Velasco, V. Gorteau, S. Matile, Angew. Chem. Int. Ed. Engl.
2008, 47, 921–923.
[25] W. S. Shin, H.-H. Jeong, M.-K. Kim, M.-R. Kim, M.-K. Kim, B. V. K. Naidu,
S.-H. Jin, J.-K. Lee, J. W. Lee, Y.-S. Gal, Mol. Cryst. Liq. Cryst. 2007, 462,
59–66.
[26] J. Fuller, M. C. J. Walsh, Y. Zhao, M. R. Wasielewski, Chem. Mater. 2002,
14, 952–953.
[27] J. Feng, Y. Zhang, C. Zhao, R. Li, W. Xu, X. Li, J. Jiang, Chem. Eur. J. 2008,
14, 7000–7010.
N,N(-dibutyl-1,7-dipiperidinyl-3,4:9,10-perylenetetra-carb-
oxylic diimide (3), and N,N(-dibutyl-1,6-dipiperidinyl-3,4:9,10 -
perylenetetracarboxylic diimide (4):
A
mixture of
N,N0-dibutyl-1,6-dibromo-3,4:9,10- perylenetetracarboxylic dii-
mide and N,N0-dibutyl-1,7-dibromo -3,4:9,10 -perylenete tracar-
boxylic diimide (1 g, 1.51mmol) was dissolved in 30ml piperidine.
The solution was heated at 608 under dry nitrogen for 48h with
stirring. Excess piperidine was removed on a rotary evaporator. The
solid collected was purified by column chromatography on silica
gel using 1:2 CH2Cl2/CCl4 as eluent. 3: green solid; 619 mg, yield
61%; mp. > 300 8C; 1H NMR (300MHz, CDCl3) d 9.29 (d, 2H), 8.24 (d,
2H), 8.17 (s, 2H), 4.24 (t, 4H), 3.34 (d, 4H), 2.76 (m, 4H), 1.36–1.88(m,
20H), 0.99 (t, 6H); 13C NMR (100Hz, CDCl3) d 163.4, 163.3, 150.5,
134.9 129.4, 127.6, 123.7, 123.3, 122.9, 122.3, 122.2, 120.6, 52.6,
40.4, 32.4, 30.3, 25.7, 23.8, 20.5, 13.9; MALDI-TOF MS(m/z) 668.8,
Calcd for C42H44N4O4 (m/z) 668.8. Anal. Calcd. for C42H44N4O4: C,
75.42; H, 6.63; N, 8.38. Found: C, 75.39; H, 6.62; N, 8.41. 4: blue solid;
142 mg, yield 14%; mp. > 300 8C; 1H NMR (300MHz, CDCl3) d 9.71
(d, 2H), 8.58 (d, 2H), 8.36 (s, 2H), 4.20 (m, 4H), 3.35 (d, 4H), 2.85 (m,
[28] J. Feng, B. Liang, D. Wang, H. Wu, L. Xue, X. Li, Langmuir 2008, 24,
11209–11215.
wileyonlinelibrary.com/journal/poc
Copyright ß 2010 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2011, 24 621–629