Storr et al.
JOCFeatured Article
provide C-functionalized purine nucleosides of varying sub-
stitution patterns.9 There is a particular interest in the
synthesis of 8-modified purine nucleosides and the following
bioapplications: conformational studies to assess DNA/
RNA base pairing,10 cytostatic properties against certain
tumor cell lines,11 antagonist effects at the A3 adenosine
receptor,12 thrombin inhibitory activity,13 fluorescence app-
lications,14 components in supramolecular assembly,15
among other possibilities.16 In addition to these bioapplica-
tions, other structurally diverse 8-aryl-20-deoxyadenosines
act as pH-sensing fluorescent probes,17 as biomarkers for
exposure to chemical carcinogens,18 and as luminescent and
electroactive labels19 (selected examples given in Figure 1).
Protection of both the sugar hydroxyl groups and the reac-
tive heteroaromatic substituents was considered mandatory
until recently developed conditions showed that unprotected
FIGURE 1. Selected 8-aryl-20-deoxyadenosines.
halogenated nucleosides can be effectively cross-coupled with
various nucleophilic components.20 Quite remarkably, haloge-
nated nucleoside triphosphates are also viable substrates for
Suzuki-Miyaura cross-couplings.21,22
(1) (a) Burgess, K.; Cook, D. Chem. Rev. 2000, 100, 2047. (b) Asseline, U.
Curr. Org. Chem. 2006, 10, 491. (c) Rist, M. J.; Marino, J. P. Curr. Org. Chem.
2002, 6, 775. For a fascinating special issue dedicated to this area, see: (d)
Tor, Y. Tetrahedron 2007, 63, 3425.
Significant progress has been made in the synthetic chemistry
of prefunctionalized nucleosides. A new challenge has emerged
in nucleoside chemical synthesis, which involves the use of
nonfunctionalized derivatives, e.g., 20-deoxyadenosine rather
than 8-bromo-20-deoxyadenosine. This approach would allow
one to greatly diversify the portfolio of C-functionalized purine
nucleosides with the ultimate goal of selectively synthesizing
C-functionalized nucleotides and oligonucleotides. The emer-
gence of direct arylation (functionalization) strategies for
aromatic and heteroaromatic compounds, which is a popular
replacement23 for classical cross-coupling methodologies,
allows us to assess the potential for selective C-H functiona-
lization in nucleosides, particularly purines.
(2) Gao, J. M.; Watanabe, S.; Kool, E. T. J. Am. Chem. Soc. 2004, 126,
12748.
(3) Alvarez-Salas, L. M. Curr. Top. Med. Chem. 2008, 8, 1379.
(4) Ropartz, L.; Meeuwenoord, N. J.; van der Marel, G. A.; van Leeuwen,
P. W. N. M.; Slawin, A. M. Z.; Kamer, P. C. J. Chem. Commun. 2007, 1556.
(5) (a) Cowley, M. J.; Lynam, J. M.; Whitwood, A. C. Dalton Trans. 2007,
4427. (b) Lynam, J. M. Dalton Trans. 2008, 4067.
(6) (a) De Clercq, E. Biochem. Pharmacol. 1984, 33, 2159. (b) Minakawa,
N.; Kojima, N.; Sasaki, T.; Matsuda, A. Nucleosides Nucleotides 1996, 15,
251. (c) De Clercq, E.; Descamps, J.; De Somer, P.; Barr, P. J.; Jones, A. S.;
Walker, R. T. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 2947. (d) Manfredini,
S.; Baraldi, P. G.; Bazzanini, R.; Marangoni, M.; Simoni, D.; Balzarini, J.;
De Clercq, E. J. Med. Chem. 1995, 38, 199. (e) Hocek, M.; Holy, A.; Votruba,
ꢀ
ꢀ
I.; Dvorakova, H. J. Med. Chem. 2000, 43, 1817.
(7) For a review covering the recent advances in the synthesis of purine
derivatives, see: Legraverend, M. Tetrahedron 2008, 64, 8585.
(8) Fairlamb, I. J. S. Tetrahedron 2005, 61, 9661.
(9) (a) Agrofoglio, L. A.; Gillaizeau, I.; Saito, Y. Chem. Rev. 2003, 103,
1875. (b) Hocek, M. Eur. J. Org. Chem. 2003, 245. (c) Lakshman, M. K. Curr.
Org. Synth. 2005, 2, 83.
Some methods have been described for the Pd-catalyzed
intermolecular direct arylation of similar compounds, e.g.,
(benz)imidazoles derivatives.24 However, rather curiously there
is a requirement for stoichiometric CuI additives, although
not exclusively.25 Furthermore, some success has been had
in arylating suitably protected purine derivatives, e.g., N9-
benzyl derivatives.26 In parallel with the Hocek group,27
(10) (a) Bhardwaj, P. K.; Vasella, A. Helv. Chim. Acta 2002, 85, 699. (b)
ꢀ
Eppacher, S.; Solladie, N.; Bernet, B.; Vasella, A. Helv. Chim. Acta 2000, 83,
1311. (c) Saenger, W. Principles of Nucleic Acid Structure; Springer Verlag:
Berlin, 1984; pp 69-78. (d) Catalanotti, B.; Galeone, A.; Paloma, L. G.; Mayol,
L.; Pepe, A. Bioorg. Med. Chem. Lett. 2000, 10, 2005.
(11) Manfredini, S.; Baraldi, P. G.; Bazzanini, R.; Marangoni, M.;
Simoni, D.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1995, 38, 199.
(12) Volpini, R.; Costanzi, S.; Lambertucci, C.; Vittori, S.; Klotz, K.-N.;
Lorenzenc, A.; Cristalli, G. Bioorg. Med. Chem. Lett. 2001, 11, 1931.
(13) He, G. -X.; Krawczyk, S. H.; Swaminathan, S.; Shea, R G.;
(21) Capek, P.; Pohl, R.; Hocek, M. Org. Biomol. Chem. 2006, 4, 2278.
(22) (a) Collier, A.; Wagner, G. Org. Biomol. Chem. 2006, 4, 4526. (b)
Collier, A.; Wagner, G. Chem. Commun. 2008, 178.
ꢀ
Dougherty, J. P.; Terhorst, T.; Law, V. S.; Griffin, L. C.; Coutre, S.;
Bischofberger, N. J. Med. Chem. 1998, 41, 2234.
(14) (a) Srivatsan, S. G.; Greco, N. J.; Tor, Y. Angew. Chem., Int. Ed.
2008, 47, 6661. (b) Srivatsan, S. G.; Weizman, H.; Tor, Y. Org. Biomol.
Chem. 2008, 6, 1334. (c) Firth, A. G.; Fairlamb, I. J. S.; Darley, K.; Baumann,
C. G. Tetrahedron Lett. 2006, 47, 3529.
(15) (a) Sessler, J. L.; Sathiosatham, M.; Doerr, K.; Lynch, V.; Abboud,
K. A. Angew. Chem., Int. Ed. 2000, 39, 1300. (b) Davis, J. T. Angew. Chem.,
Int. Ed. 2004, 43, 668.
(23) For specific reviews concerning the direct arylation of heteroaro-
matics, see: (a) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173.
(b) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200. Regioselective aspects in
the direct arylation of heteroaromatics are covered in: (c) Fairlamb, I. J. S.
Chem. Soc. Rev. 2007, 36, 1036. For general reviews, see: (d) Godula, K.;
Sames, D. Science 2006, 312, 67. (e) Campeau, L.-C.; Fagnou, K. Chem.
Commun. 2006, 1253. (f) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62,
2439. For an excellent special issue dedicated to catalytic aromatic C-H
activation, see: Bedford, R. B. Tetrahedron 2008, 64, 5973.
(16) (a) Crisp, G. T.; Gore, J. Tetrahedron 1997, 53, 1523. (b) Gillet, L. C.
J.; Scha1rer, O. D. Org. Lett. 2002, 4, 4205.
(17) (a) Sun, K. M.; McLaughlin, C. K.; Lantero, D. R.; Manderville, R.
A. J. Am. Chem. Soc. 2007, 129, 1894. For a related application for 8-phenol-
20-deoxyguanosines, see: (b) Weishar, J. L.; McLaughlin, C. K.; Baker, M.;
Gabryelski, W.; Manderville, R. A. Org. Lett. 2008, 10, 1839.
(18) (a) Dai, Q.; Xu, D.; Lim, K.; Harvey, R. G. J. Org. Chem. 2007, 72,
(24) (a) Bellina, F.; Cauteruccio, S.; Mannina, L.; Rossi, R.; Viel, S. J.
Org. Chem. 2005, 70, 3997. (b) Bellina, F.; Cauteruccio, S.; Mannina, L.;
Rossi, R.; Viel, S. Eur. J. Org. Chem. 2006, 693. (c) Bellina, F.; Cauteruccio,
S.; Rossi, R. Eur. J. Org. Chem. 2006, 1379. (d) Bellina, F.; Cauteruccio, S.;
Rossi, R. J. Org. Chem. 2007, 72, 8543. (e) Bellina, F.; Calandri, C.;
Cauteruccio, S.; Rossi, R. Tetrahedron 2007, 63, 1970. (f) Bellina, F.;
Cauteruccio, S.; Di Fiore, A.; Rossi, R. Eur. J. Org. Chem. 2008, 543,
5445. (g) Bellina, F.; Cauteruccio, S.; Di Fiore, A.; Marchetti, C.; Rossi, R.
Tetrahedron 2008, 64, 6060.
ꢀ
4856. (b) Vrabel, M.; Hocek, M.; Havran, L.; Fojta, M.; Votruba, I.;
ꢀꢁ ꢁ ꢀ
´
sek, L.; Zendlova, L.; Hobza, P.; Shih,
ꢀ
Klepetarova, B.; Pohl, R.; Rulı
I.-h.; Mabery, E.; Mackman, R. Eur. J. Inorg. Chem. 2007, 12, 1752.
ꢀ
(19) (a) Vrabel, M.; Horakova, P.; Pivokova, H.; Kalachova, L.;
Cernocka, H.; Cahova, H.; Pohl, R.; Sebest, P.; Havran, L.; Hocek, M.;
ꢀ
ꢀ
ꢀ
ꢁ
ꢁ
ꢀ
ꢀ
(25) In ref 24a, it was shown that C2-arylation can occur as a minor
reaction pathway using catalytic Pd(OAc)2 (5 mol %), AsPh3 (10 mol %),
and CsF (2 equiv) in DMF at 140 °C. C5-arylation is usually the preferred
and major reaction pathway.
ꢀ
Fojta, M. Chem.;Eur. J. 2009, 15, 1144. (b) Vrabel, M.; Pohl, R.;
ꢀꢁ
ꢀ
Klepetarova, B.; Votruba, I.; Hocek, M. Org. Biomol. Chem. 2007, 5, 2849.
(20) (a) Collier, A.; Wagner, G. Synth. Commun. 2006, 36, 3713. (b)
ꢁ
Shaughnessy, K. H. Eur. J. Org. Chem. 2006, 1827. (c) Capek, P.; Hocek, M.
ꢁ
ꢁ
(26) Cerna, I.; Pohl, R.; Klepetarova, B.; Hocek, M. Org. Lett. 2006, 8,
ꢀꢁ
ꢀ
Synlett 2005, 3005. (d) Western, E. C.; Daft, J. R.; Johnson, E. M. II;
Gannett, P. M.; Shaughnessy, K. H. J. Org. Chem. 2003, 68, 6767.
5389.
ꢁ
(27) Cerna, I.; Pohl, R.; Hocek, M. Chem. Commun. 2007, 4729.
ꢁ
J. Org. Chem. Vol. 74, No. 16, 2009 5811